
768    Clinical Advances in Hematology & Oncology  Volume 11, Issue 12  December 2013

Clinical Biomarkers in Colorectal Cancer
Van Morris, MD, and Scott Kopetz, MD, PhD

Abstract: Colorectal cancer remains the second leading cause 

of cancer-related death in the United States. While chemo-

therapy remains the backbone upon which treatment for meta-

static colorectal cancer is built, targeted therapies have been 

employed, albeit with mixed results, in the management of this 

disease. Nonetheless, increased understanding in recent years of 

the complexity and heterogeneity of cellular abnormalities driving 

these tumors has identified potential targets for future interven-

tions. This article will review the seminal biomarkers of predic-

tive and prognostic importance currently used in the treatment 

of patients with colorectal cancer, and will highlight additional 

promising biomarkers which may be incorporated into clinical 

practice in the future.

Introduction

Biomarkers in clinical oncology are detectable and characteristic 
alterations in DNA and proteins that provide insight into the 
mechanisms and phenotypic behavior driving a patient’s cancer. 
The presence (or absence) of a selected biomarker offers the clini-
cian the potential to plan therapies personalized to an individual 
patient’s tumor. Over the past decades, research detailing critical 
molecular pathways implicated in the pathogenesis of colorectal 
cancer has identified various genetic and epigenetic alterations 
with critical predictive and prognostic utility in the management 
of this disease. This review discusses the role of validated biomark-
ers used in the clinical care of patients with colorectal cancer and 
will highlight newer markers that may be incorporated into stan-
dard practices in the future.

Microsatellite Instability

The presence of microsatellite instability (MSI) in a colorectal tumor 
is a biomarker of high clinical prognostic and predictive impor-
tance. It is most commonly used for the management of patients 
with stage II and III colorectal cancer. Microsatellites are short seg-
ments of repeating DNA nucleotides that are prone to developing 
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mutations. In microsatellite-rich regions, either nucleo-
tides inserted aberrantly by DNA polymerases are not 
corrected because the microsatellite environment is not 
amenable to repair, or microsatellite repeats insert errone-
ously into exons to generate a frameshift mutation that 
alters the length and function of the resulting translated 
product. Normally, the mismatch repair (MMR) pro-
teins—MLH1, MSH2, MSH6, and PMS2—correct 
these errors during DNA synthesis.1 The absence of any 
of these enzymes (and the subsequent propensity for 
mutations) defines the existence of MSI. Either a germ-
line mutation in any of the 4 aforementioned precursor 
genes or epigenetically regulated gene silencing through 
hypermethylation of the MLH1 promoter region can 
impair expression of normal MMR gene products.2 
Cells that harbor all 4 functional enzymes are deemed 
microsatellite stable (MSS). MSI status can be tested in 
colorectal tumors in one of 2 ways. The first is immu-
nohistochemical staining to determine the presence and 
relative levels of expressed MMR proteins. The second is 
polymerase chain reaction (PCR) amplification of 5 gene 
loci (BAT25, BAT26, D5S346, D2S123, D17S250) sus-
ceptible to microsatellite insertion in order to determine 
whether the repeats are present.3

MSI-high tumors are found in approximately 15% 
of all colorectal cancers and are typically right-sided 
primary tumors with mucinous histopathology. MSI is 
associated with earlier disease stage at the time of diag-
nosis,4,5 decreased rates of recurrence after resection of the 
primary tumor, lower incidence in distant metastases, and 
prolonged overall survival compared with patients with 
MSS tumors.5-7 These findings suggest a unique biology 
associated with MSI and allow it to be considered a posi-
tive prognostic marker in patients with colorectal cancer. 

Microsatellite status is also useful in the decision to 
administer adjuvant chemotherapy for early-stage disease. 
For example, a study of patients with stage II or III MSS 
colorectal cancer treated with adjuvant 5-fluorouracil 
showed that both overall survival and recurrence-free sur-
vival at 5 years were increased for patients if they received 
chemotherapy. However, patients with MSI-high stage 
II colorectal tumors, in the absence of other high-risk 
clinicopathologic features (eg, <12 lymph nodes exam-
ined, colonic obstruction or perforation, pathologic T4 
tumors, lymphovascular invasion, or high tumor grade), 
fare worse if given adjuvant chemotherapy. In this study, 
patients with MSI-high colorectal tumors trended toward 
better outcomes if they received adjuvant chemotherapy 
than if they were not given additional treatment. The 
differences were not statistically significant, however: 
70.7% vs 88.0% (P=.07) of patients were still alive and 
69.3% vs 82.9% (P=.11) were without disease at 5 years.8 
A separate study of 5 clinical trials comparing adjuvant 

leucovorin (or levamisole) with surgery alone in patients 
with stages II or III colorectal cancer found no benefit 
for chemotherapy in those with MSI tumors; however, 
progression-free survival was prolonged (hazard ratio 
[HR], 0.67; P=.02) by chemotherapy for patients with 
MSS tumors.9 We interpret these data as the rationale to 
offer 5-fluorouracil in the adjuvant setting to otherwise 
healthy patients with stage II, MSS colorectal tumors (in 
the absence of other high-risk features). Given these find-
ings, we believe that MSI serves as a negative predictive 
marker for response to 5-fluorouracil and provides useful 
insight into the treatment planning for patients with stage 
II colorectal cancer. This marker is less influential in the 
decision-making process surrounding adjuvant treatment 
for patients with stage III disease, because the currently 
accepted standard of care is for all patients with lymph 
node metastases to receive chemotherapy following surgi-
cal resection of their primary tumor and lymph nodes.

Microsatellite testing is also employed to look for 
hereditary syndromes that may predispose to the devel-
opment of colorectal cancer. In patients with colorectal 
cancer diagnosed before the age of 50 years or those with 
strong family histories of colorectal and/or uterine cancer, 
MSI testing is routinely used as a genetic biomarker to 
screen for Lynch syndrome, an autosomal dominant con-
dition present in 2% to 4% of all colorectal cancers.10-13 
Patients with Lynch syndrome harbor germline mutations 
in the MMR proteins1 and therefore lack expression of 
at least 1 MMR protein. If immunohistochemical testing 
indicates the absence of an MMR protein, then patients 
can be tested for specific germline mutations unique to 
Lynch syndrome. Recent data have suggested that testing 
for Lynch syndrome occurs more frequently in National 
Cancer Institute-designated Comprehensive Cancer Cen-
ters relative to community hospital cancer programs.14 We 
hope that in the coming years, testing tumors for features 
found in the Lynch Syndrome will become routine prac-
tice universally in order to identify patients (and family 
members) at risk for developing other malignancies. If 
positive, patients and their family members should be 
referred to a genetic counselor for further recommenda-
tions regarding earlier cancer screening for tumors associ-
ated with this hereditary syndrome.

KRAS

For patients with metastatic colorectal cancer, the bio-
marker most commonly tested assesses for the presence of 
a mutation in the KRAS oncogene. The Ras family of sig-
naling proteins consists of GTPases that alternate between 
an inactive guanine-diphosphate (GDP)-bound state (Ras-
GDP) and an active guanine triphosphate (GTP)-bound 
(Ras-GTP) state.15,16 When mutated, KRAS undergoes a 
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conformational change that impairs allosteric binding of 
the GTPase-activating proteins (GAPs), which hydrolyze 
GTP back to GDP and return KRAS-GDP to an inactive 
form.17 With GAPs unable to access the mutated KRAS 
substrate, this kinase remains GTP-bound and constitu-
tively activated.18,19 Downstream effector pathways, such 
as Raf/Mek/Erk, phosphoinositide 3-kinase (PI3K)/Akt, 
and tumor invasion and metastasis induction protein 1 
(TIAM1), are ensuingly triggered by activated KRAS to 
promote tumor cell proliferation, anti-apoptotic activity, 
and cytoskeletal reorganizations needed for the develop-
ment of metastases.20-23

Mutations in the KRAS oncogene occur in approxi-
mately 35% to 40% of all colorectal cancers.4,24,25 In the 
nonmetastatic setting, KRAS-mutated tumors tend to be 
of lower histologic grade and demonstrate microsatellite-
low or MSS features.4 Tissue samples collected prospec-
tively from the PETACC-3, EORTC 40993, and SAKK 
66-00 trials showed no difference in the frequency of a 
KRAS mutation according to stage at presentation. These 
findings suggest that these mutations occur early in tumor 
development. Additionally, these studies of patients with 
stage II or III colorectal cancer found no difference in 
recurrence-free or overall survival between patients with 
KRAS mutations and those with KRAS wild-type tumors 
following definitive resection.4

In the stage IV setting, differences in patterns of dis-
tant spread and survival outcomes based on KRAS status 
suggest that this mutation affects the clinical presenta-
tion and ultimate outcomes of patients with metastatic 
disease. For example, one retrospective review reported 
that patients who undergo hepatic resection for liver 
metastases have higher mortality rates if their tumors bear 
KRAS mutations (HR, 2.4; P=.004).26 In a retrospec-
tive study at our institution of patients who underwent 
sequential hepatic resection of colorectal metastases, not 
only were KRAS mutations more common in the group 
of patients receiving adjuvant oxaliplatin, 5-fluorouracil, 
and leucovorin (FOLFOX) after the initial surgery (when 
compared with patients receiving 5-fluorouracil alone or 
no chemotherapy), but overall survival was also shortened 
in this group.27,28 Perhaps then, the exposure to FOLFOX 
selects for a KRAS-mutated population present in recur-
ring liver metastases that correlates to worse outcomes 
among patients with metastatic liver lesions harboring 
such mutations. 

Another recent study reported that KRAS-mutated 
metastatic colorectal tumors have a predilection for dis-
tal spread to the lung, whereas KRAS wild-type tumors 
more commonly involve the liver and distant lymph 
nodes than KRAS-mutated tumors.29,30 The authors also 
reported that colorectal tumors with lung involvement 
demonstrate a relatively high rate of discordance (32.4%) 

in KRAS status between the metastatic (mutated) site and 
the primary (wild-type) tumor compared with other sites 
of metastases, whereas other studies have shown a high 
rate of concordance between the primary tumor and asso-
ciated liver metastases (3.6% discordance).31 Whether or 
not lung-predominant KRAS-mutated colorectal cancers 
acquire additional de novo mutation after development 
of the primary tumor remains unclear at this time and 
supports the argument that KRAS-mutated tumors are 
a heterogeneous population; additional work to refine 
further substratifications within this group is needed. 

Nonetheless, the most relevant aspect for KRAS 
mutation testing in clinical practice centers around 
the use of therapies with anti-epidermal growth factor 
receptor (EGFR) monoclonal antibodies in patients 
with metastatic colorectal cancer. Cetuximab (Erbitux, 
Bristol-Myers Squibb) is a human-murine chimeric 
monoclonal antibody directed against the ligand-bind-
ing site of the EGFR receptor,32 and panitumumab is 
a fully humanized monoclonal antibody also targeting 
EGFR. Initial early-phase studies using these antibod-
ies as single-agent therapy in heavily pretreated patients 
with metastatic colorectal cancer demonstrated an over-
all response rate of approximately 10%.33,34 However, no 
association was reported between immunohistochemical 
levels of EGFR expression and clinical outcomes with 
anti-EGFR treatment.34,35 

In vitro work on activating mutations in KRAS first 
elucidated the negative relationship between the presence 
of a KRAS mutation and response to anti-EGFR therapy.36 
On the basis of these findings, a retrospective analysis of 
572 patients with metastatic colorectal cancer treated with 
cetuximab and/or best supportive care showed significantly 
improved progression-free survival (3.7 vs 1.9 months; 
P<.001) and overall survival (9.5 vs 4.8 months; P<.001) in 
the subset of patients with KRAS wild-type tumors; how-
ever, these survival differences were not observed in patients 
with KRAS-mutated metastatic colorectal tumors.37 This 
study was one of the first to suggest that the absence of 
a KRAS mutation in codon 12 may predict a benefit for 
patients receiving anti-EGFR therapy. Subsequently, multi-
ple studies have confirmed this hypothesis with cetuximab 
or panitumumab, alone or in combination with cytotoxic 
chemotherapy. KRAS has been widely validated as a predic-
tive marker for anti-EGFR therapy in metastatic colorectal 
cancer.38-44 On the basis of these findings, the American 
Society of Clinical Oncology (ASCO) recommends that 
all such patients be tested for the presence of a KRAS 
mutation in codon 12 or 13 and be considered possible 
candidates for cetuximab and panitumumab, should KRAS 
wild-type tumors be present.45 

Tumors with KRAS mutations are a heterogeneous 
population that differ biologically and clinically based on 
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the particular codon mutated. Codon 12 is the most com-
mon site for a KRAS mutation to occur, with these muta-
tions present in approximately 25% to 35% of all colorectal 
cancers.46,47 Within codon 12 mutations, various amino 
acids may be substituted for the physiologic glycine, with 
valine (G12V) thought to be most deleterious among the 
codon 12 mutations. Nonetheless, despite these interesting 
differences within a single codon, no codon 12 substitu-
tion has been shown prospectively to render these tumors 
sensitive to cetuximab or panitumumab. At this time, the 
particular amino acid substituted bears no significance in 
the decision to withhold anti-EGFR therapy in patients 
whose tumors bear these mutations. 

In contrast to colorectal cancer cells with mutations 
in codon 13, KRAS 12 colorectal tumor cells demonstrate 
a more aggressive behavior in vitro with increased cellular 
proliferation, stronger resistance to apoptosis, and decreased 
cell-cell interaction.48 When these findings are translated 
to clinical outcomes, retrospective analyses have suggested 
that patients with KRAS G13D substitutions have longer 
progression-free survival, increased overall survival, and an 
improved response to anti-EGFR antibody therapy com-
pared with patients with metastatic colorectal tumors har-
boring codon 12 KRAS mutations.49-52 Collectively, these 
laboratory and clinical results imply that codon 13 mutated 
tumors may behave more favorably than their codon 12 
counterparts. However, these findings have thus far not 
been validated prospectively, and no benefit in survival with 
cetuximab or panitumumab has been demonstrated with 
patients bearing tumors with mutations in codon 13. Until 
further prospective studies can be completed, it is recom-
mended that patients with KRAS 13 mutated tumors not 
be treated with anti-EGFR therapy. 

KRAS mutations at non-exon 2 sites (eg, codons 
61, 117, and 146) have been described as occurring in 
approximately 5% to 10% of the studied populations with 
colorectal cancer.46,53-55 A recent analysis of the PRIME 
(Panitumumab Randomized Trial in Combination 
With Chemotherapy for Metastatic Colorectal Cancer 
to Determine Efficacy) trial showed that patients whose 
tumors have NRAS mutations or codon 61, 117, or 146 
KRAS mutations demonstrate a worse progression-free 
survival and overall survival when treated with FOLFOX/
panitumumab relative to FOLFOX alone.56 Similar find-
ings were seen in the analysis of the panitumumab vs 
best supportive care study.57 Although different groups 
have reported differing survival outcomes and responses 
to anti-EGFR therapies for patients whose tumors bear 
these mutations,46,58,59 most data suggest that tumors with 
“nontraditional” NRAS and KRAS non-codon 12 or 13 
mutations do not respond to anti-EGFR therapy. We 
therefore recommend testing for NRAS mutations and 
KRAS 61 and 146 mutations in patients with metastatic 

colorectal cancer. Future prospective studies need to 
clarify the clinical significance of these “alternative” RAS 
mutations, given that these tumors would otherwise be 
considered “wild type” under current practices if untested, 
in order for patients to avoid treatment with ineffective 
and costly therapies should these tumors behave similarly 
to those with KRAS mutations at other codons.

Amphiregulin/Epiregulin

Despite the aforementioned successes with cetuximab 
and panitumumab, not all patients with KRAS wild-type 
metastatic colorectal cancer respond to these therapies. 
Two biomarkers that have surfaced in recent years that 
perpetuate activity of the EGFR, despite physiologically 
normal activity of the KRAS oncogene, are amphiregulin 
and epiregulin, ligands homologous to the epidermal 
growth factor. These ligands bind EGFR and activate 
its downstream signaling pathways. In colorectal tumor 
cells, amphiregulin and epiregulin can be secreted in an 
autocrine feedback loop60 to perpetuate cell proliferation 
in a self-sustaining manner.61 They also can promote 
oncogenic behavior through induction of anti-apoptotic 
behavior,62 stimulation of angiogenesis,63 and upregula-
tion of genes involved in cell invasion and motility within 
the tumor microenvironment that promote metastatic 
activity.64,65 In colorectal cancer patient specimens, these 
molecules have been associated with an increased depth 
of tumor invasion, pathologic detection of perineural 
invasion, and a higher rate of distant metastases.66 Thus, 
the presence of these markers implies a more aggressive 
underlying tumor biology driven by the multiple afore-
mentioned downstream effectors of these 2 ligands.

Multiple studies have retrospectively investigated 
the roles of amphiregulin and epiregulin as predictive 
biomarkers for anti-EGFR therapy. In one series of 
110 patients with metastatic colorectal cancer receiv-
ing cetuximab monotherapy, these genes were highly 
expressed in 25% of all tumors. In patients treated with 
cetuximab, high levels of both amphiregulin and epiregu-
lin were individually associated with prolonged median 
progression-free survival, which was doubled among 
those with higher expression of either ligand, relative 
to patients with low or undetectable levels (104 vs 57 
days for amphiregulin, and 116 vs 57 days for epiregulin, 
respectively; P<.001 for each).67 Similar findings were 
described for a group of 220 patients with metastatic 
colorectal cancer treated with irinotecan and cetuximab; 
here, both progression-free survival and overall survival 
were longer for those with tumors expressing higher 
levels of either amphiregulin or epiregulin.68 It should 
be noted that these results were observed only in the 
setting of KRAS wild-type colorectal tumors; patients 
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with tumors harboring KRAS mutations, even if high 
ligand expression was present, showed no survival benefit 
with cetuximab. In addition, patients with low levels of 
both ligands do not appear to benefit from anti-EGFR 
therapy and fare similarly to those with KRAS-mutated 
tumors, having shorter response rates and worse survival 
outcomes when treated with cetuximab relative to their 
counterparts expressing higher levels of either ligand.68,69 

These results imply that, in the absence of a con-
stitutively activated KRAS-mutated protein, antibodies 
to the EGFR extracellular binding domain impair the 
amphiregulin:EGFR or epiregulin:EGFR interaction 
and, in doing so, prevent the colorectal tumor cells from 
activating the EGFR-mediated signaling pathways that 
propagate extension of disease in these patients. Addition-
ally, these data are very encouraging in terms of further 
classifying patients with KRAS wild-type, amphiregulin/
epiregulin highly expressed tumors as a more accurately 
defined group who may benefit from anti-EGFR thera-
pies. One challenge in the development of these biomark-
ers has been using a continuous variable like the quan-
tification of amphiregulin/epiregulin expression levels to 
categorize tumors, and then maintaining consistency of 
these results across different testing sites. Nonetheless, 
these findings need to be validated prospectively; should 
it occur, such validation would presumably be the basis 
for future routine testing of amphiregulin and epiregulin 
levels as biomarkers predictive for response to cetuximab.

BRAF

Another biomarker that has gained increased importance 
in subdefining populations of patients with colorectal 
cancer in recent years is the BRAF oncogene. BRAF is an 
isoform of the RAF kinase and serves as the downstream 
substrate to activated RAS. Mutations in the BRAF 
oncogene—most commonly a valine-to-glutamic acid 
substitution in codon 600 (V600E)—occur in approxi-
mately 8% to 10% of all colorectal cancers70 and lead to 
constitutive activation of the MAPK pathway.71 BRAF-
mutated tumors are more commonly located in the proxi-
mal colon and are associated with female sex and older 
age72; histologically, they tend to have mucinous features, 
are extensively hypermethylated, and are highly correlated 
with an MSI-high phenotype.73

The presence of a BRAF mutation is widely accepted 
as a poor prognostic marker in patients with colorectal 
cancer. Multiple retrospective reviews have reported that, 
for patients with phase 2 and 3 BRAF-mutated tumors, 
recurrence-free survival and overall survival following 
surgical resection are historically worse than for their 
BRAF wild-type counterparts.74,75 One retrospective 
study reported a median overall survival of 10 months 

for patients with stage IV disease with BRAF-mutated 
tumors, significantly worse than the 34.7 months for 
patients with metastatic, BRAF wild-type colorectal 
cancer.76 Other studies have confirmed this finding that 
overall prognosis is worse in the metastatic setting for 
patients with BRAF mutations compared with wild-
type BRAF.46,77-80 Despite their KRAS wild-type status, 
patients with metastatic, BRAF-mutated colorectal 
tumors do not appear to respond to such therapies as 
cetuximab or panitumumab,81 presumably owing to 
downstream activation of the MAPK pathway occurring 
independently of EGFR or KRAS activity. 

Vemurafenib is a tyrosine kinase inhibitor specific 
to the kinase domain of the V600E-mutated BRAF that 
blocks signaling of the MAPK pathway in vitro.82 In a 
phase 3 trial for patients with metastatic melanoma, this 
drug improved overall survival compared with the stan-
dard of care cytotoxic agent dacarbazine.83 However, a 
phase 1b trial in which vemurafenib was tested in patients 
with BRAF-mutated metastatic colorectal cancer reported 
a partial response in only 5% of patients treated with 
vemurafenib.84 Several other patients in the same study 
did demonstrate a mixed response to vemurafenib, which 
suggests that this agent may serve as an effective backbone 
for combination therapy in the future. Recent in vitro 
studies in cell lines have implicated EGFR overexpres-
sion85,86 and PI3K/Akt pathway activation87 as mecha-
nisms overcoming inhibition by vemurafenib; the com-
binations of vemurafenib/cetuximab and vemurafenib/ 
PI3K inhibitors, respectively, may serve as the rationale 
for future clinical trials.

PI3KCA

Mutations in the PI3K/Akt signaling pathway generate 
oncogenic transformation in vitro by resisting apoptosis, 
stimulating cell proliferation, and promoting cell migra-
tion.88-93 Approximately 10% to 30% of all patients with 
colorectal cancer have mutations in PI3K,46,94-97 the vast 
majority of which localize to the helical domain (exon 9) 
and the kinase domain (exon 20).98,99 Constitutive activa-
tion of the kinase occurs through 2 distinct mechanisms 
according to the specific exon mutated,100 implying dif-
ferent underlying biological activity in oncogenesis based 
on the presence of a mutation in either exon 9 or exon 20.

The prognostic significance of PI3KCA mutations 
currently remains unclear, as discordant results have been 
reported regarding whether an isolated PI3KCA mutation 
is associated with survival outcomes in colorectal can-
cer.46,80,94,95,97,101-107 Conclusions drawn from many studies 
must be interpreted with caution, owing to the relatively 
small populations examined and because many of the stud-
ies did not consider the influence of concomitant KRAS 
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or BRAF mutations in interpreting their analyses. Given 
the inconsistent findings to date, we do not recommend 
routine testing for PI3KCA mutations as a prognostic bio-
marker in patients with metastatic colorectal cancer.

Importantly, recent data have identified a role for 
PI3KCA mutations as a biomarker for benefit from 
aspirin therapy for stage II and III colon cancer. One 
recent retrospective series examined the use of aspirin in 
patients with colorectal cancer and found an improve-
ment in both cancer-related mortality and overall sur-
vival for patients with PI3KCA mutations taking aspirin 
relative to those with wild-type PI3KCA oncogenes on 
aspirin therapy ([HR, 0.18; P<.001] and [HR, 0.54; 
P=.01], respectively).108 An analysis of patients with 
stage II and III colorectal cancer adjuvantly treated 
with rofecoxib (a COX-2 inhibitor) or placebo showed 
no improvement either in recurrence-free survival or 
overall survival among patients with tumors bearing 
PI3KCA mutations. However, similar to the aforemen-
tioned study, adjuvant aspirin use (when compared to 
no aspirin use) was associated with an improvement in 
recurrence-free survival among patients with PI3KCA-
mutated colorectal tumors (unpublished data). The 
strength of these effects is striking, as is the confirmed 
association with the outcome of recurrence and mortal-
ity. Most prior aspirin studies have focused on the role 
of aspirin in secondary prevention of new adenomas and 
adenocarcinomas through colorectal mucosal protec-
tion; however, these studies and others have confirmed 
a role for aspirin in preventing growth of subclinical 
micrometastatic disease.109 Given the known bleeding 
risk of aspirin, a risk/benefit discussion with the patient 
is important, but in the presence of a PIK3CA muta-
tion, the data suggest a net benefit from aspirin use for 
reduction in mortality after resection of stage II and III 
colon cancer. 

Multigene Assays

Although adjuvant chemotherapy is the accepted standard 
of care for all otherwise capable patients who undergo 
resection for stage III colorectal cancer, chemotherapy is 
generally reserved for patients with resected stage II dis-
ease whose tumors exhibit particular high-risk clinical and 
pathologic features. To date, the use of single biomark-
ers as robust predictors for disease recurrence has been 
investigated but not validated in the adjuvant setting for 
patients with stage II colorectal cancer.110-114 Because these 
tumors are complex, with multiple pathways implicated 
in the development of new disease following resection, 
multigene assays have been developed in recent years to 
identify these underlying elaborate molecular pathways 
implicated in disease recurrence, both for prognostication 

following curative surgery and for prediction of benefit of 
adjuvant chemotherapy.

The Oncotype DX assay (Genomic Healt.) for 
colorectal cancer was developed initially from 4 cohorts 
of patients with resected stage II or III colorectal cancer 
treated with either surgery alone or surgery plus 5-fluo-
rouracil/leucovorin adjuvant chemotherapy (NSABP 
C-01/C-02, Cleveland Clinic study, NSABP C-04, and 
NSABP C-06).115-118 RNA was extracted from formalin-
fixed, paraffin-embedded tumor blocks, and reverse 
transcription PCR studies were then performed on the 
extracted RNA to identify 7 genes associated with recur-
rence and 6 genes associated with benefit from 5-fluo-
rouracil/leucovorin chemotherapy.119 Next, recurrence 
scores (based on the pattern of expression of the 7 afore-
mentioned identified genes) were used to stratify patients 
into low-risk, intermediate-risk, and high-risk groups for 
recurrence. When these genes were examined in a valida-
tion cohort of tumor samples derived from patients who 
participated in the QUASAR (Quick and Simple and 
Reliable) study,120 the previously described recurrence 
score was predictive of recurrence risk at 3 years (12%, 
18%, and 22% for the low-, intermediate-, and high-risk 
groups, respectively; P<.01) independently of other clini-
copathologic tumor features. Unfortunately, the 6-gene 
treatment score was unable to predict a population of 
patients with resected stage II colorectal cancer who 
could benefit from adjuvant chemotherapy. Given that 
finding, the Oncotype DX assay is not routinely used for 
treatment decisions regarding when to use 5-fluoroura-
cil–based regimens postoperatively in the stage II setting.

ColoPrint (Agendia) is another multigene assay in 
which 18 genes were identified (using techniques similar 
to those used for the Oncotype DX assay) from tumors 
taken from 206 patients with stage I to III colorectal 
cancer to develop a gene signature with prognostic and 
predictive utility. Based on the pattern of expression of the 
18 selected genes, patients were classified as either at low 
or high risk for recurrence. In one cohort studied, relapse-
free survival rates were 87.6% and 67.2% in the low- and 
high-risk groups, respectively (HR, 2.5; P=.005).121 The 
ability to predict recurrence was even stronger when stage 
III patients were excluded from the analysis, as the HR 
for recurrence for stage II patients was 3.34 (P=.017). A 
separate validation study independently corroborated the 
prognostic capabilities of ColoPrint in patients with stage 
II disease; here, 5-year distant metastasis-free survival rates 
were 94.9% and 80.6% for the low- and high-recurrence 
risk groups, respectively (HR, 4.28; P=.013).122 Interest-
ingly, these results predicted recurrence independently of 
the inclusion of the clinicopathologic considerations typi-
cally used to decide whom to treat with adjuvant chemo-
therapy. These findings further the notion that ColoPrint 
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may stand independently as a robust predictor for disease 
recurrence in the stage II setting. A prospective trial is 
currently under way comparing the ColoPrint assay with 
the clinical risk factors used in treatment decision-making 
for stage II disease; should the former be found superior, 
there may be a future role for this test in routine practice. 

Conclusions

Although advances in our understanding of breast and 
lung cancers have led to the subclassifications of mul-
tiple populations of tumors according to the underlying 
molecular phenotypes, the diversity and heterogeneity 
of colorectal cancers are only now beginning to be bet-
ter described and better appreciated. Even clinically 
relevant KRAS mutations demonstrate heterogeneity 
not only according to the particular codon mutated, but 
also according to the amino acid mutated within a spe-
cific codon. In addition, tumors now considered “KRAS 
wild-type” may harbor mutations (eg, BRAF) with added 
prognostic significance. Further research will continue 
to identify other effector molecules and pathways that 
dictate their driving biologic response (or lack thereof ) 
to available therapies. Although our practices for routine 
biomarker testing are often dictated by the stage at pre-
sentation of the patient being treated (Table), we expect 
that the limited panel of testing markers will continue 
to expand in the near future as our understanding of the 
complex biology that affects treatment modalities in these 
patients evolves.
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