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Update on the Use of Angiogenesis Inhibitors 
in Adult Patients With Brain Tumors
David A. Reardon, MD

Abstract: The outcome following conventional therapy for 

patients with primary and metastatic brain tumors remains poor. 

Most primary brain cancers are angiogenic, and much research 

has targeted angiogenesis therapeutically. Vascular endothe-

lial growth factor drives angiogenesis in brain tumors, although 

other factors contribute. Aggregate data confirm that the safety 

profile of antiangiogenic agents is acceptable among patients 

with brain cancer; the risks for serious adverse events, such as 

stroke, hemorrhage, and thrombosis, are low and similar to those 

observed in other cancers. Evidence of antitumor activity includes 

encouraging rates of radiographic response and progression-free 

survival. In addition, the potent antipermeability effects of these 

agents can substantially reduce cerebral edema and corticosteroid 

requirement. Importantly, most data demonstrate that antiangio-

genic agents preserve neurologic function and improve quality 

of life. Unfortunately, the impact of angiogenesis inhibition on 

overall survival appears to be modest at best in patients with brain 

cancer. In addition, mechanisms of resistance, including selection 

favoring invasion, remain poorly understood.

Introduction 

Brain cancers in adults include diverse primary malignancies that 
originate from tissues of the central nervous system (CNS), as well 
as secondary metastatic tumors. Among the former, glial neoplasms 
predominate, whereas neuronal-derived tumors are less common. 
Glial tumors are classified into grades 1 through 4. Grade 1 and 2 
tumors, also known as low-grade gliomas and sometimes referred 
to by the misnomer “benign tumors,” are characterized by relatively 
low rates of cellular density, pleomorphism, and proliferation. In 
contrast, grade 3 and 4 tumors, also referred to as high-grade glio-
mas, exhibit increased rates of these features; in addition, grade 4 
tumors, including glioblastomas, are distinguished by the presence 
of necrosis and neovascular proliferation. 

Treatment for most CNS tumors has historically included max-
imal safe resection followed by radiation therapy; chemotherapy, 
such as temozolomide, has been added for some tumor types more 
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recently. Nonetheless, the outcome for most patients 
remains poor, and better treatment strategies remain des-
perately needed. 

Angiogenesis, or the formation of new blood ves-
sels from preexisting vasculature, is a common feature of 
many primary CNS tumors. In glial tumors, markers of 
angiogenesis—including vessel density and expression of 
vascular endothelial growth factor (VEGF), the primary 
mediator of tumor angiogenesis—increase progressively 
as grade increases and are linked with prognosis.1,2 Expres-
sion of several additional proangiogenic growth factors is 
also increased in some primary CNS tumors, including 
malignant gliomas, whereas the levels of endogenous angio-
genesis inhibitors are often low.3-6 In addition, targeting 
angiogenesis therapeutically in preclinical studies carried 
out in orthotopic brain tumor models has demonstrated 
evidence of antitumor activity.7-9

Based on these factors, clinical research efforts in 
neuro-oncology focusing on antiangiogenic therapies 
have increased dramatically over the past several years. 
Initial enthusiasm was somewhat tempered by potential 
safety concerns, which fortunately have not materialized. 
Extensive cumulative experience provides reassurance 
that antiangiogenic agents are associated with low rates of 
significant acute toxicities, including hemorrhage, stroke, 
thrombosis, and wound dehiscence, in patients with brain 
cancer. 

Evaluation of potential longer-term toxicities, 
including effects on cognition, has been challenging 
because of several factors, including the following: (1) the 
confounding inherently invasive and destructive nature of 
these tumors; (2) collateral damage associated with estab-
lished treatment modalities; and (3) limited survival of 
most patients. Nonetheless, therapeutic benefit associated 
with inhibition of angiogenesis is substantial for at least 
some primary CNS tumors, particularly glioblastoma. 
Specifically, unprecedented rates of radiographic response 
and progression-free survival (PFS) in patients with 
either recurrent or newly diagnosed glioblastoma have 
been achieved with bevacizumab (Avastin, Genentech), a 
humanized monoclonal antibody against VEGF. Further-
more, response is typically accompanied by preservation 
or improvement of neurologic function, as well as taper-
ing or avoidance of chronic corticosteroid dependence. 

Based on these results, bevacizumab received acceler-
ated approval from the US Food and Drug Administration 
(FDA) for recurrent glioblastoma in 2009. Unfortunately, 
the overall survival (OS) benefit associated with bevaci-
zumab as well as other antiangiogenic agents for patients 
with glioblastoma and other brain cancers appears to be 
minimal. Several issues remain unresolved and controver-
sial regarding the role of antiangiogenic agents—bevaci-
zumab in particular—in the treatment of glioblastoma, 

including interpretation of imaging response, optimal 
timing and dosing, the role of combinatorial agents, and 
mechanisms of resistance. In this review, we highlight 
the rationale for and clinical experience in targeting 
angiogenesis in selected primary brain tumors as well as 
metastatic CNS tumors. 

Glioblastoma and Angiogenesis

Background
Glioblastoma, the second most common primary brain 
tumor, is diagnosed in approximately 11,000 patients each 
year in the United States.10 The biology of glioblastoma is 
highly complex, in part because of the existence of distinct 
subtypes. Historically, glioblastomas have been classified 
as primary if they arise de novo. In contrast, secondary 
glioblastomas, which account for only 5% to 10%, arise 
from preexisting low-grade gliomas.11 More recently, 3 to 
4 subtypes of glioblastoma have been defined based on 
distinct patterns of gene expression.12,13 

Despite standard therapy, including maximal safe 
resection followed by radiation therapy, daily temozolo-
mide, and monthly cycles of adjuvant temozolomide, 
median survival is only 14.6 months, and fewer than 10% 
of patients are alive 5 years after diagnosis.14 

Glioblastomas are often classified based on methyl-
guanine methyltransferase (MGMT) status because this 
classification is highly predictive of response to current 
therapy. MGMT is a ubiquitous DNA repair enzyme 
that is capable of repairing damage from alkylating agents 
simply by removing the alkyl or methyl groups that such 
agents insert into DNA.15 Approximately two-thirds of 
glioblastomas exhibit an unmethylated MGMT gene pro-
moter, which leads to gene expression.16 In such patients, 
the addition of temozolomide minimally improves 
median survival from 11.8 to 12.6 months compared 
with radiation therapy alone. In contrast, the addition of 
temozolomide to radiotherapy is associated with a median 
OS of 23.4 months among the one-third of patients who 
have newly diagnosed glioblastoma with a methylated 
MGMT gene promoter.14 A recent phase 3 study dem-
onstrated that intensification of the dose of adjuvant 
temozolomide as a strategy to overcome MGMT failed 
to improve outcome, regardless of MGMT status.17 Thus, 
better therapies are desperately needed for all patients 
with glioblastoma multiforme (GBM), but especially for 
those with unmethylated MGMT tumors.

Glioblastoma is one of the most angiogenic of can-
cers, with VEGF levels that are significantly greater than 
those of other glial tumors and normal brain tissue.2,5,18-20 
Additional proangiogenic growth factors are upregulated 
in glioblastomas, including platelet-derived growth factor 
(PDGF), placental growth factor, neuropilins, fibroblast 
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growth factor, angiopoietins, integrins, interleukin 8, 
and DLL4-Notch signaling.3-6 Elevated VEGF levels 
are likely linked to a “perfect storm” of hypoxia that is 
both endogenous and treatment-induced,21-23 as well as 
hypoxia-independent dysregulated signaling through the 
phosphoinositide 3-kinase (PI3K)/Akt and Ras/MAPK 
pathways.24-28 Characteristic pseudopalisades of tumor 
cells emanating from necrotic regions are associated with 
significant hypoxia and the secretion of proangiogenic 
cytokines.29 In addition, glioma stem cells, which local-
ize to an angiogenic niche within GBM tumors,30 express 
significant levels of proangiogenic factors, including 
VEGF.31-33 Nonetheless, angiogenesis may contribute 
differentially to tumor pathophysiology among different 
subtypes of glioblastoma. Specifically, angiogenic cyto-
kine profiles have been shown to differ between primary 
and secondary glioblastoma tumors,34 and angiogenic 
factors are particularly associated with the mesenchymal 
glioblastoma subtype based on gene expression analyses.35

Most preclinical studies demonstrate that VEGF 
suppression improves survival in orthotopic GBM mod-
els. Decreased tumorigenicity has been observed in some 
of these studies,7-9 whereas one study demonstrated no 
effect on tumor growth despite enhanced survival.36 In 
addition, some preclinical studies have demonstrated that 
VEGF-targeted therapy may enhance invasion and host 
vessel co-option.8,37

Clinical Experience
The clinical benefit of bevacizumab among patients with 
glioblastoma was first reported in a series of heavily pre-
treated patients with recurrent disease38 and was quickly 
confirmed in single-arm, phase 2 studies.39-41 In contrast 
to historical data derived from meta-analyses of patients 
with recurrent glioblastoma treated in cooperative group 
clinical trials before the introduction of bevacizumab, 
which showed radiographic response and 6-month PFS 
(PFS-6) rates of 5% and 10% to 15%, respectively,42-44 
initial studies of bevacizumab demonstrated radiographic 
response and PFS-6 rates of approximately 50% and 
40%, respectively. Importantly, these initial studies also 
allayed safety concerns, including documentation of 
rare hemorrhages and strokes, and rates of thrombosis, 
fatigue, hypertension, proteinuria, wound dehiscence, 
and intestinal perforation were low and similar to those 
observed among other cancer populations treated with 
bevacizumab.45 Accelerated approval of bevacizumab by 
the FDA for recurrent glioblastoma was granted in May 
of 2009 based on durable radiographic responses noted 
in 2 parallel, phase 2 studies that included independent 
radiologic review.46 In BRAIN (A Study to Evaluate 
Bevacizumab Alone or in Combination With Irinotecan 
for Treatment of Glioblastoma Multiforme), 167 adult 

patients with glioblastoma at first or second recurrence 
and a KPS of at least 70 were randomized to receive either 
bevacizumab or bevacizumab plus irinotecan.47 Dual 
primary endpoints for this study were rates of objective 
response rate (ORR) and PFS-6 relative to historical 
benchmarks. Importantly, the study was not statistically 
powered to detect superiority of either of the treatment 
arms. In this study, a trend toward improved outcome was 
noted for the combination arm. Specifically, the ORRs 
for bevacizumab monotherapy and for bevacizumab plus 
irinotecan were 28.2% and 37.8%, respectively, while the 
PFS-6 rates were 42.6% and 50.3%, respectively. None-
theless, median OS was 9.2 months for the monotherapy 
arm and 8.7 months for the combination arm, and 
patients in the combination arm experienced higher rates 
of adverse events, attributable primarily to irinotecan. 

The second study that contributed to accelerated 
FDA approval enrolled a more challenging group of 
patients with glioblastoma in that the eligibility criteria 
did not restrict based on number of prior progressions, 
and patients were allowed a Karnofsky performance sta-
tus (KPS) of as low as 60.48 The primary endpoint for 
this single-arm, phase 2 study conducted at the National 
Cancer Institute (NCI) was PFS-6 and was compared 
with historical data. The outcome of this study was lower 
compared with the outcome of BRAIN, likely reflecting 
the more challenging patient population; nonetheless, the 
ORR and PFS-6 rates were 35% and 29%, respectively. 
Median OS in this study was 7.75 months.

The unprecedented rates of ORR and PFS observed 
in BRAIN and the NCI study led to accelerated approval 
for bevacizumab monotherapy in the United States in May 
2009.46 Of note, an OS benefit was also noted in these 
studies relative to historical benchmarks, although the 
increment was less robust. Specifically, OS in the BRAIN 
and NCI bevacizumab studies was 7.8 to 9.2 months, 
compared with 5.0 to 6.3 months in large series of patients 
with recurrent GBM treated in the recent era before beva-
cizumab.42,43,49 Very similar survival data were also noted 
in a retrospective series of contemporaneous patients with 
recurrent GBM treated at a single institution. In this study, 
OS was 9.0 months for those who received salvage bevaci-
zumab therapy, compared with only 6.1 months for those 
treated with non-bevacizumab regimens (P=.04).50 None-
theless, the European Medicines Agency rejected approval 
of bevacizumab for recurrent glioblastoma in November 
2009 because of the lack of a non-bevacizumab control 
arm, a modest observed survival benefit, poor elucidation 
of the underlying mechanism of antitumor activity, and 
challenges to classifying the radiographic response and 
progression with VEGF-targeting agents.51 

Limitations of the traditional criteria for radiographic 
response in neuro-oncology, which rely historically on 
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measurement of the bidimensional product of enhancing 
tumors as described by the Macdonald criteria,52 were 
recognized by many clinicians early in the development of 
bevacizumab and other VEGF/VEGF receptor (VEGFR)–
targeting therapeutics for CNS cancers. Specifically, VEGF/
VEGFR blockade potently decreases the permeability of 
tumor vasculature, which can markedly diminish contrast 
uptake within hours of dosing.53 Although the antiper-
meability effect of these agents often benefits patients by 
reducing neurologic deficits and the need for long-term 
dependence on high-dose corticosteroids,54,55 such rapid 
changes in contrast uptake unlikely reflect direct antitumor 
activity and can therefore be misinterpreted as a “pseudo-
response.” Furthermore, reports of progressive T2/fluid 
attenuation inversion recovery (FLAIR) changes with or 
without clinical decline were increasingly described among 
patients with recurrent glioblastoma following VEGF/
VEGFR inhibitor therapy.56-58 These observations con-
tributed to the development of the Response Assessment 
in Neuro-Oncology (RANO) criteria, which modified the 
response assessment in patients with glioblastoma undergo-
ing antiangiogenic therapy to require assessment of both 
the enhancing and nonenhancing tumor components, with 
the latter measured by T2/FLAIR changes.59

In an attempt to build on the clinical benefit associ-
ated with single-agent bevacizumab, several subsequent 
reports evaluated a multitude of agents administered in 
combination with bevacizumab to patients with recur-
rent glioblastoma, including chemotherapeutics,41,50,58,60-68 
targeted therapies,69-71 and reirradiation.72-74 None of these 
combinations generated outcome data significantly supe-
rior to those achieved with bevacizumab monotherapy, 
although it is unclear whether this finding reflects a lack of 
true complementary antitumor activity for the evaluated 
combinations or simply the limited inherent antitumor 
activity of each of these agents against recurrent glioblas-
toma. Of note, recently reported data demonstrated that 
patients randomized to receive bevacizumab plus lomus-
tine had a substantially better outcome than those treated 
with either bevacizumab or lomustine alone.75

Following the encouraging activity noted with bevaci-
zumab among patients with recurrent glioblastoma, several 
additional agents targeting VEGF or VEGFR were evalu-
ated. In particular, several tyrosine kinase inhibitors (TKIs) 
targeting VEGFR have been studied, including pazopanib 
(Votrient, GlaxoSmithKline),76,77 AEE788,78 sunitinib 
(Sutent, Pfizer),79-81 vatalanib,82-84 sorafenib (Nexavar, Bayer/
Onyx),85-87 and vandetanib (Caprelsa, AstraZeneca).88,89 
Although most of these agents target additional growth fac-
tor receptors beyond VEGFR2 that are potentially relevant 
to glioblastoma physiology, evidence of therapeutic benefit 
has been disappointing, and benefit appears in general to 
be inferior to that achieved with bevacizumab. Among 

VEGFR TKIs, cediranib, an oral inhibitor of KIT and 
the PDGF receptor in addition to VEGFR2, has been the 
most extensively studied, including in an initial single-arm, 
phase 2 study followed by a randomized, phase 2 study. 
Although encouraging evidence of single-agent activity 
was initially reported,90 the randomized study reported 
that the outcomes achieved with cediranib monotherapy, 
as well as with cediranib plus lomustine, failed to surpass 
that of lomustine monotherapy.91 Interestingly, it has been 
reported that a subset of patients who fail VEGFR TKI 
therapy may still benefit from bevacizumab.92,93

Aflibercept (Zaltrap, Sanofi/Regeneron) is a recom-
binant fusion protein linking the extracellular domains 
of VEGF to the Fc portion of immunoglobulin G1 that 
exhibits high VEGF-binding potency. It is currently 
FDA-approved for macular degeneration and metastatic 
colorectal cancer and has also been evaluated in patients 
with malignant glioma. Despite promising preclinical 
data in GBM models,94,95 aflibercept was ineffective and 
associated with moderate toxicity among patients with 
recurrent malignant glioma in a recent phase 2 study.96

Given the therapeutic benefit observed in the recur-
rent setting, bevacizumab has been further evaluated in 
patients with newly diagnosed glioblastoma. Three single-
arm, phase 2 studies were initially reported in which 
bevacizumab was added to standard radiation with temo-
zolomide followed by adjuvant temozolomide.97-99 Each 
of these studies affirmed that the addition of bevacizumab 
did not lead to unexpected or increased adverse events. 
PFS in these studies was 13 to 14 months and essentially 
doubled that of historical data without bevacizumab.100 
OS was encouraging, at approximately 20 months. 

Two registration studies, RTOG (Radiation Therapy 
Oncology Group) 0825 and AVAglio (Phase 3 Trial of 
Bevacizumab Plus Temozolomide and Radiotherapy in 
Newly Diagnosed Glioblastoma Multiforme), which eval-
uated the addition of bevacizumab to standard radiation 
and temozolomide for patients with newly diagnosed glio-
blastoma, have been recently reported.101,102 The 2 studies 
had several similarities, including a randomized, placebo-
controlled, phase 3 study design and statistical power to 
evaluate dual endpoints of median PFS and OS. Impor-
tantly, there were also significant differences between the 2 
studies. First, AVAglio enrolled patients regardless of degree 
of resection. In contrast, RTOG 0825 mandated submis-
sion of tumor tissue for correlative genetic studies and thus 
excluded patients who underwent diagnostic biopsy only. 
Because of this difference, RTOG 0825 enrolled a higher 
percentage of patients (60%) with a gross total resection, a 
known positive prognostic factor, while excluding patients 
with multifocal disease, a known negative prognostic fac-
tor.103 Another important difference between the 2 studies 
was that RTOG 0825, which was conducted primarily in 
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North America, unblinded patients at the time of progres-
sion and allowed control patients to cross over and receive 
bevacizumab. Of note, approximately 30% of control 
patients in AVAglio also crossed over and received beva-
cizumab following progression, although this crossover 
was not formally incorporated into the study design. The 
impact of such crossover on OS remains to be determined. 
Another important difference between the studies was the 
method used to assess response. RTOG 0825 used the 
Macdonald criteria,52 which did not include assessment of 
nonenhancing changes on magnetic resonance imaging. In 
contrast, a modified version of the RANO criteria59 was 
used for response assessment in AVAglio, which included 
evaluation of both enhancing and nonenhancing disease. 
Other differences between the 2 studies included the dura-
tion of adjuvant temozolomide (6 cycles in AVAglio vs 
12 in RTOG 0825), continuation of single-agent bevaci-
zumab until progression following completion of planned 
adjuvant temozolomide (AVAglio only), and starting point 
of bevacizumab dosing during radiation (day 1 in AVAglio 
vs after day 21 in RTOG 0825). 

Other than a higher rate of gross total resection in 
RTOG 0825, patient characteristics between the 2 stud-
ies were comparable and equally distributed between 
the study arms (Table 1). Importantly, both studies 
confirmed the overall safety of bevacizumab administered 
to patients with newly diagnosed glioblastoma. Of note, 
efficacy measures in both studies were also remarkably 
similar (Table 2). PFS was more than 4 months longer 
for patients in the bevacizumab arm of each of the studies 
compared with those in the control arm. Furthermore, a 
PFS benefit was consistently observed regardless of clini-
cal prognostic factors or MGMT status. Unfortunately, 
no difference in OS was observed between the treatment 
arms of both studies, and neither study identified a subset 
of patients in whom the addition of bevacizumab pro-
vided a survival benefit. It remains unclear how the lack of 
survival improvement yet PFS benefit, noted consistently 
between RTOG 0825 and AVAglio, will be interpreted by 
regulatory agencies, particularly given ongoing controver-
sies regarding response assessment in the setting of agents 
that alter vascular permeability.

Both RTOG 0825 and AVAglio importantly included 
assessments of other measures of potential clinical benefit. 
AVAglio reported significantly higher rates of preservation 
of a KPS of at least 70, as well as markedly lower rates of 
corticosteroid requirement, among recipients of bevaci-
zumab. Both of these factors would be expected to trans-
late into significantly improved quality of life (QOL) for 
patients with glioblastoma. Unfortunately, RTOG 0825 
has not reported outcome on either of these important 
endpoints. Formal QOL assessment was incorporated 
into both studies, as a secondary objective for AVAglio 

and as an exploratory objective for RTOG 0825. Despite 
the use of similar, validated QOL questionnaires, discor-
dant results were unexpectedly noted. Specifically, among 
bevacizumab recipients, AVAglio noted consistently 
superior scores, whereas RTOG 0825 reported poorer 
scores for some domains. The explanation for these dis-
cordant results is unclear, but they may reflect lower rates 
of adherence in RTOG 0825 and/or differences in data 
analysis between the 2 studies. An independent review 
of the QOL data from both studies should be performed 
before firm conclusions are drawn regarding the impact of 
bevacizumab on this important endpoint among patients 
with glioblastoma. An important strength of RTOG 0825 
was the incorporation of formal neurocognitive testing. 
Of note, although bevacizumab was shown to be asso-
ciated with stable or improved neurocognitive function 
among patients with recurrent glioblastoma,104 processing 
speed and executive function were noted to be poorer in 
the patients with newly diagnosed glioblastoma treated 
with bevacizumab in RTOG 0825. These data indicate 
that neurocognitive function in bevacizumab recipients 
should be further evaluated in a consistent manner.

Although a subset of patients with glioblastoma 
appears to derive long-term antitumor control with 
bevacizumab therapy, resistance inevitably emerges, as 
has been observed with every other treatment approach 
evaluated in patients with glioblastoma. Currently, one 

Table 1. Patient Characteristics: AVAglio and RTOG 0825

Category AVAglio RTOG 0825

Placebo BEV Placebo BEV

Number of patients 463 458 309 312

Age

     Median, y 56 57 — —

     <50 y — — 21 18

Male 64 62 63 56

KPS ≥90 70 67 61 60

Surgery

     Biopsy 10 13 0 0

     Subtotal 48 46 38 34

     Complete 42 41 59 63

Methylated MGMT 26 26 28 29

RPA class

     3 16 17 15 11

     4 60 57 64 71

     5 23 26 18 16
AVAglio, Phase 3 Trial of Bevacizumab Plus Temozolomide and Radiotherapy 
in Newly Diagnosed Glioblastoma Multiforme; BEV, bevacizumab; KPS, 
Karnofsky performance status; MGMT, methylguanine methyltransferase; RPA, 
recursive partitioning analysis; RTOG, Radiation Therapy Oncology Group.
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of the greatest challenges in neuro-oncology clinics is 
the treatment of patients with glioblastoma following 
bevacizumab progression, as no effective salvage therapy 
has been identified to date. Most patients succumb 
to tumor progression within a few months of bevaci-
zumab failure,48,61,67,105-108 although a modest survival 
benefit was reported in a retrospective series of patients 
who underwent reirradiation.109 A recent retrospective 
analysis demonstrated that bevacizumab continuation 
beyond initial progression was associated with a modest 
improvement compared with non-bevacizumab salvage 
therapy, although all patients fared quite poorly.110 A 
randomized, prospective study to evaluate bevacizumab 
continuation beyond initial progression among patients 
with recurrent glioblastoma is expected to initiate 
accrual in the near future.

Extensive efforts have been made to define biomarker 
predictors of response to antiangiogenic agents among 
patients with malignant glioma. A wide array of potential 
biomarkers—including tumor tissue proteins, imaging 
parameters, and circulating markers—have been assessed, 
but none has been validated.111 Ongoing and future efforts 
are critically needed to address this elusive challenge.

Grade 3 Malignant Glioma and Angiogenesis

Grade 3 malignant gliomas account for approximately 4% 
of all primary CNS tumors. The most common subtypes 
of grade 3 malignant glioma are anaplastic astrocytoma, 
anaplastic oligoastrocytoma, and anaplastic oligodendro-
glioma.10,112 These tumors occur in younger people than 
do grade 4 glial tumors, and are usually diagnosed early in 
the fourth decade of life. A better outcome is linked with 
oligodendroglioma histology, chromosome arms 1p and 
19q deletion, MGMT methylation, and mutation of the 
isocitrate dehydrogenase 1 gene.113-120 Following maximal 
safe resection, patients with grade 3 malignant gliomas have 
historically been treated with radiation or chemotherapy,116 
although more recent studies have confirmed a significant 
survival benefit associated with radiation and adjuvant che-
motherapy.121,122 Ongoing studies are evaluating temozolo-

mide chemoradiotherapy, as is routinely used for patients 
with glioblastoma, as well as the different components of 
this approach among patients with newly diagnosed grade 
3 malignant glioma based on the status of chromosome 
arms 1p and 19q (NCT00887146 and NCT00626990). 
Although survival is in general better than in patients who 
have grade 4 tumors, nearly all patients who have grade 3 
malignant gliomas ultimately develop progressive disease, 
and median survival times are approximately 20, 61, and 
56 months among patients with anaplastic astrocytoma, 
anaplastic oligoastrocytoma, and anaplastic oligodendro-
glioma, respectively.117,121 Of note, patients with anaplastic 
oligodendroglioma that exhibits 1p and 19q codeletion 
have recently been shown to have a 2-fold improvement in 
OS following combined chemoradiotherapy.121

Grade 3 gliomas are angiogenic, but typically exhibit 
lower levels of VEGF expression and microvessel density 
than glioblastomas.2,20,123-126 Several reports have con-
firmed adequate safety of bevacizumab therapy among 
patients with recurrent anaplastic gliomas in addition to 
encouraging evidence of therapeutic benefit, including 
relatively high rates of radiographic response, PFS, and 
OS.54,58,62,69,127-133 Importantly, several of these reports 
confirm additional measures of therapeutic benefit, such 
as preservation or improvement of neurologic function, 
performance status, and QOL, as well as a diminished 
requirement for prolonged corticosteroid treatment. 
Nonetheless, no registration studies are under way to 
extend regulatory approval for the use of bevacizumab to 
patients with grade 3 malignant glioma. 

Other Primary CNS Tumors and Angiogenesis

In addition to its activity among patients with malignant 
glioma, the activity of bevacizumab in small series of 
patients with other primary malignant brain tumors has 
been reported.

Bilateral Vestibular Schwannomas 
Bilateral vestibular schwannomas, a hallmark of neurofibro-
matosis type 2 (NF2), typically cause deafness by middle 

Table 2. Outcome for Patients With Newly Diagnosed Glioblastoma Treated in AVAglio and RTOG 0825

Category AVAglio RTOG 0825

Placeboa BEV Placeboa BEV

Number of patients 463 458 309 312

Median PFS, mo 6.2 10.6 (HR, 0.64; P<.0001) 7.3 10.7 (HR, 0.79; P=.007)b

Median OS, mo 16.8 16.9 16.7 15.7
AVAglio, Phase 3 Trial of Bevacizumab Plus Temozolomide and Radiotherapy in Newly Diagnosed Glioblastoma Multiforme; BEV, bevacizumab; HR, hazard ratio; OS, 
overall survival; PFS, progression-free survival; RTOG, Radiation Therapy Oncology Group.

a Controls for AVAglio and RTOG 0825 were differentially “contaminated” by BEV crossover at progression of disease.

b RTOG 0825 PFS did not reach predefined 30% reduction in HR.
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age.134,135 Treatment options have historically been limited 
to surgery or radiation therapy, but these interventions can 
also contribute to hearing loss.136,137 Increased expression of 
VEGF and its receptors has been demonstrated in a high 
percentage of vestibular schwannomas.138,139 In a recently 
reported retrospective series of patients with NF2 and 
progressive bilateral vestibular schwannomas, bevacizumab 
therapy was associated with a high rate of radiographic 
response. Remarkably, this was accompanied by a durable 
hearing response in most patients.139 

Meningioma
Meningiomas, which arise from arachnoid cap cells of the 
dura, are the most common primary CNS malignancy 
and account for 34% of all primary brain tumors.10 
Approximately 80% of meningiomas are grade 1, and are 
often effectively treated with surgery and/or radiotherapy. 
In contrast, grade 2 and 3 meningiomas, which account 
for 15% and 3% of all meningiomas, respectively, typi-
cally recur following surgery and radiotherapy. A variety 
of medical therapies, including several different chemo-
therapeutic agents, various targeted and biologically 
based therapies, and antihormonal agents, have been 
evaluated, with limited antitumor benefit shown for 
most patients.140-142 Measures of angiogenesis, including 
increased levels of vessel density and VEGF expression, 
are detectable in many meningiomas,143-147 and some 
series have linked these factors with meningioma grade 
and prognosis.148-150 Three retrospective series have evalu-
ated the use of bevacizumab among heavily pretreated 
patients with recurrent/progressive meningioma,151,152 
including a subset with NF2.153 In general, bevacizumab 
was well tolerated by these patients, although isolated 
episodes of CNS hemorrhage and intestinal perforation 
were reported. Evidence of antitumor activity, including 
radiographic responses and prolonged PFS, was noted in 
these studies, and a phase 2 study of single-agent bevaci-
zumab is ongoing for patients with recurrent/progressive 
meningioma (NCT01125046).

Ependymoma 
Ependymomas account for 2% of all primary brain 
tumors among adults and can arise throughout the CNS 
axis.10,154,155 Maximal safe resection and radiation therapy 
are considered standard therapeutic approaches.156 Effective 
therapy for patients with recurrent tumors remains poorly 
defined.157-159 Some ependymomas have been noted to be 
angiogenic, with increased VEGF expression and vessel 
density.126,160 A small retrospective series recently reported 
a high rate of radiographic response, as well as encouraging 
PFS and OS, following bevacizumab therapy among adults 
with anaplastic ependymoma that had recurred despite 
surgery and radiotherapy.161 A phase 2 study evaluating car-

boplatin and bevacizumab for adults with recurrent epen-
dymoma has recently opened (NCT01295944) through 
the Collaborative Ependymoma Research Network. 

Hemangioblastoma 
Hemangioblastomas are rare vascular tumors that can arise 
within the CNS, either spontaneously or in association 
with von Hippel-Lindau disease.162 Antitumor benefit asso-
ciated with antiangiogenic agents, including bevacizumab, 
has been reported in some patients with recurrent and/or 
progressive, unresectable hemangioblastomas.163-165

Brain Metastases and Angiogenesis

Brain metastases are roughly 10 times more common 
than primary brain tumors among adults, with approxi-
mately 170,000 cases diagnosed annually in the United 
States.166 The most common systemic cancers linked to 
CNS metastases are lung cancer, breast cancer, and mela-
noma.167 Treatment typically includes surgery and radio-
therapy. The outcome for most patients is poor. Effective 
systemic therapies have not been defined.

Unlike malignant gliomas, in which vigorous angio-
genesis is a consistent and noteworthy feature, brain 
metastases exhibit angiogenesis that varies with the sub-
type of the underlying tumor.168-172 Of note, diminished 
angiogenesis has been observed in some experimental 
models of metastatic brain tumors.173

Antiangiogenic therapies, including bevacizumab, 
have not been extensively evaluated in prospective studies 
of patients with metastatic brain tumors. Nonetheless, 
adequate safety, including a low rate of brain hemorrhage, 
has been noted in large meta-analyses of patients who had 
CNS metastases treated with bevacizumab.174,175 In addi-
tion, encouraging preliminary clinical benefit for some 
indications has recently been reported.176-180 Prospective 
trials evaluating the therapeutic benefit of and adverse 
events associated with antiangiogenic agents for patients 
with brain metastases are ongoing.181 

Conclusion

Patients with primary and metastatic brain cancers rep-
resent a substantial proportion of the cumulative cancer 
population. Benefit from conventional therapies is lim-
ited to a subset of patients and is typically not durable. 
More effective therapeutic strategies are critically needed.

Angiogenesis, a common feature of many brain 
tumors, is particularly noted in high-grade gliomas. A wide 
spectrum of antiangiogenic agents has been investigated 
for brain cancer, with bevacizumab being the most com-
monly evaluated. Studies have confirmed acceptable safety 
profiles for these agents, including rates of both potentially 
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life-threatening and less serious adverse events comparable 
with those in other cancer indications.

Bevacizumab has widespread regulatory approval 
for recurrent glioblastoma based on durable radiographic 
responses noted in uncontrolled clinical trials. Full FDA 
approval of bevacizumab for glioblastoma is contingent 
on subsequent demonstration of unequivocal clinical 
benefit and currently depends on the results of 2 recent 
placebo-controlled, randomized, phase 3 studies for 
patients with newly diagnosed disease. These studies 
demonstrated substantial increments in PFS with beva-
cizumab, although an OS benefit was not observed in 
either study. Discordant results regarding the impact of 
bevacizumab on QOL and evidence of neurocognitive 
decrement observed in one of the studies indicate that 
deeper study of these relevant endpoints is required. 
Nonetheless, consistent data supporting preservation 
of neurologic function and reduction in corticosteroid 
dependence associated with bevacizumab are noteworthy. 
The role of antiangiogenic agents, including bevacizumab, 
in other, less common CNS cancers is under evaluation, 
but encouraging preliminary data support further inves-
tigation of antiangiogenic agents in patients with grade 
3 malignant glioma, vestibular schwannoma, progressive 
meningioma, ependymoma, hemangioblastoma, and 
some types of CNS metastases.
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