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Abstract: Epstein-Barr virus (EBV) is associated with a wide 

variety of B-cell–derived lymphoid neoplasms, including Burkitt 

lymphoma, lymphomas arising in immunocompromised patients 

(post-transplant and HIV-associated lymphomas), and Hodgkin 

lymphoma. In addition, EBV has been linked to some T-cell 

lymphomas (angioimmunoblastic T-cell lymphoma, extranodal 

nasal-type natural killer/T-cell lymphoma, and other rare histo-

types), nasopharyngeal cancer, and a subset of gastric cancers. 

Advances in our understanding of the pathobiology of EBV onco-

genesis, including the transforming and immunogenic properties 

of the virus and the role of immune dysregulation, have provided 

the rationale for new treatment strategies. Emerging EBV-specific 

therapeutic approaches include activation of lytic viral infec-

tion combined with antiviral drugs, inhibition of EBV-induced 

oncogenic cellular signaling pathways, adoptive EBV-specific 

T-cell therapies, and EBV vaccines. This review summarizes the 

pathobiology, clinical features, and treatment of EBV-associated 

malignancies, including new and evolving therapies focused on 

exploiting the pathobiology of EBV. 

Introduction

Epstein-Barr virus (EBV), a ubiquitous B-lymphotropic herpesvi-
rus, was the first virus directly linked to cancer in humans. Since 
its discovery and association with Burkitt lymphoma (BL) 50 
years ago, EBV has been associated with a heterogeneous group of 
lymphomas and epithelial tumors (Table 1). It infects B and T lym-
phocytes, follicular dendritic cells, smooth muscle cells, squamous 
epithelium of the oropharynx and nasopharynx, and glandular 
epithelium of the thyroid, stomach, and salivary glands. B lympho-
cytes are the major cellular reservoir for EBV persistence, and the 
majority of EBV-associated malignancies derive from EBV-infected 
B cells.1 EBV encodes an array of products that mimic or activate 
antiapoptotic molecules, cytokines, and signal transducers, thereby 
promoting EBV infection, immortalization, and transformation.2 
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Significant progress has been made in the treatment of 
EBV-associated malignancies, with decreased mortal-
ity and morbidity, but multiple challenges remain. The 
scope of ongoing and future research includes the drug 
discovery of inhibitors of viral targets and EBV-activated 
cellular targets, the disruption of latent infection, and the 
development of immunotherapeutic agents, including 
adoptive cellular therapies and vaccines.

Pathobiology of the Epstein-Barr Virus 

EBV is a gamma herpesvirus that infects more than 95% 
of the world’s population by adulthood. Primary infection 
results in transient viremia followed by a rapid immune 
response. The virus achieves lifelong persistence in its 
human host by balancing its ability to evade the immune 
system via latent infection of B lymphocytes and its ability 

to replicate and shed from the oral mucosa. EBV infection 
of B lymphocytes leads to 2 processes—the production of 
latently infected memory B cells that persist long term, 
and the differentiation toward plasma cells permissive 
of the replication of infectious virions. These outcomes 
support latent viral persistence and viral propagation.3 In 
vitro, EBV transforms human B cells into continuously 
proliferating immortalized lymphoblastoid cells, and this 
process has been used to elucidate the transforming prop-
erties of the virus and its gene products. 

The hallmarks of latent infection in EBV-associated 
malignancies are the maintenance of a stable number 
of extrachromosomal episomal EBV genomes and the 
highly restricted expression of viral genes (reviewed 
by Kieff and Rickinson4). Latent viral genes encode 6 
nuclear proteins (EBNA1, -2, -3A, -3B, -3C, and -LP); 
3 cytoplasmic latent membrane proteins (LMP1, -2A, 
and -2B); and the nontranslated EBV-encoded RNAs 
(EBERs 1 and 2) and BamH1 A rightward transcripts 
(BARTs) (Table 2). Only EBNA1, -2, -3A, and -3C and 
LMP1 are essential for the transformation of B cells. 
EBNA1 is a DNA-binding phosphoprotein required 
for the replication and maintenance of EBV episomal 
genome. EBNA2 and the EBNA3 proteins mediate the 
transcriptional activation of cellular and viral genes. 
LMP1 is the major transforming protein of EBV and a 
classic oncogene in vitro. LMP1 functions as a consti-
tutively activated member of the tumor necrosis factor 
receptor superfamily, mimicking CD40 signaling. The 
pleiotropic oncogenic properties of LMP1 are mediated 
via activation of several cell signaling pathways, includ-
ing nuclear factor (NF) κB, with concomitant upregu-
lation of BCL2. LMP2A mimics constitutive B-cell 
receptor (BCR) activation by interacting with BCR 
signaling molecules, conferring BCR-like prosurvival 
properties. Given the absence of viral lytic gene expres-
sion, including EBV DNA polymerase, latently infected 
cells are not susceptible to classic antiviral nucleoside 
analogues (eg, ganciclovir and acyclovir), and thus these 
agents do not have direct antitumor effects in EBV-
associated malignancies. 

Three distinct patterns of latent viral protein expres-
sion are identified in EBV-associated malignancies (see 
Table 2). BL is characterized by expression restricted to 
EBNA1 (latency I), whereas expression of all 6 EBNAs 
and LMP1, -2A, and -2B (latency III) characterizes 
lymphomas arising in the setting of immunosuppres-
sion. In latency II, expression is limited to EBNA1 and 
the LMPs, a pattern seen in Hodgkin lymphoma (HL) 
and nasopharyngeal carcinoma (NPC). Although spe-
cific latency patterns are linked to specific EBV-related 
malignancies, there is heterogeneity of expression among 
tumors of the same histologic type, and even among cells 

Table 1. Malignancies Associated With Epstein-Barr Virus

B-cell lymphoproliferative disorders

Burkitt lymphoma

Hodgkin lymphoma

Post-transplant lymphoproliferative disorder

HIV-associated non-Hodgkin lymphoma
	 Diffuse large B-cell lymphoma, immunoblastic- 
	   plasmacytoid, centroblastic
	 Burkitt lymphoma
	 Primary central nervous system lymphoma
	 Primary effusion lymphoma and its solid variant
	 Plasmablastic lymphoma of the oral cavity type

Rare subtypes
	 EBV-positive DLBCL of the elderly
	 Lymphomatoid granulomatosis
	 DLBCL associated with chronic inflammation

T/NK-cell lymphoproliferative disorders

Extranodal nasal-type NK/T-cell lymphoma

Aggressive NK-cell leukemia/lymphoma

Angioimmunoblastic T-cell lymphoma

Rare subtypes (variable association)
	 Enteropathy-type T-cell lymphoma
	� EBV-associated cutaneous T-cell lymphoproliferative 

disorder
	� γδ T-cell lymphoma (hepatosplenic and nonhepatosplenic)
	� Peripheral T-cell lymphoma, not otherwise specified
	� T-cell lymphoproliferative disorders after chronic EBV 

infection

Epithelial malignancies

Nasopharyngeal carcinoma

Gastric cancer
DLBCL, diffuse large B-cell lymphoma; EBV, Epstein-Barr virus; NK, natural killer. 
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within a given tumor. The immune response to latent 
EBV infection correlates with the pattern of latent viral 
expression, an observation that has important implica-
tions for immunotherapeutic approaches to specific 
EBV-associated malignancies.

The pathogenetic role of EBV in oncogenesis is an 
area of ongoing investigation. EBV activates multiple 
cellular signal transduction pathways to deregulate cell 
growth and promote survival. A key pathway affected 
by the virus is NFκB, which upregulates BCL2 and 
promotes cell survival; the JAK-STAT, PI3 kinase 
(PI3K)/Akt/mTOR, JNK/AP1, and MAP kinase path-
ways are also affected.5 Immune dysregulation plays a 
central pathogenetic role in EBV-driven B-cell lympho-
mas arising in the setting of immunodeficiency. Our 
understanding of the pathogenesis of these malignan-
cies has provided the rationale for the development of 
novel treatment strategies focused on aspects of EBV 
pathobiology, including inhibition of signal trans-
duction pathways, modulation of antiviral immune 
mechanisms, and activation of lytic/suicidal infection 
in malignant cells (Table 3).

Intriguing geographic variability has been noted 
in the incidence of some EBV-related tumors. NPC 
and BL are endemic in southern China and equatorial 
Africa, respectively, but uncommon elsewhere in the 
world. Extranodal nasal-type natural killer (NK)/T-cell 
lymphomas show a geographic predilection for regions of 
Asia, South America, and Central America and are rarely 
seen in the United States and Europe. These geographic 
associations are not fully explained. Preliminary studies 
implicate environmental cofactors over genetic predispo-
sition or oncogenic viral strains.

Diagnosis of Epstein-Barr Virus–Associated 
Malignancies

The diagnosis of EBV-associated malignancies relies on 
the detection of viral DNA and/or its gene products in 
neoplastic cells. The detection of EBV-encoded EBER 
transcripts by in situ hybridization is considered the gold 
standard for localizing latent EBV in tissue samples, as 
EBER transcripts are universally expressed in all EBV-
associated tumors. The immunohistochemical detection 
of LMP1 expression in tumor cells can be diagnostic, 
although LMP1 is not universally expressed in all EBV-
associated malignancies (see Table 2). 

The level of EBV DNA measured in whole blood, 
peripheral blood mononuclear cells, plasma, or serum by 
quantitative polymerase chain reaction (PCR), referred to 
as the EBV DNA load, has been extensively evaluated as a 
potential surrogate marker for EBV-positive malignancies, 
although its routine clinical use remains investigational. 
The EBV DNA load has been useful in predicting the 
development of post-transplant lymphoproliferative dis-
order (PTLD) and in monitoring response to treatment. 
In patients at high risk for PTLD, elevation of the EBV 
DNA load is a sensitive aid to early diagnosis, particu-
larly when used in conjunction with studies of impaired 
EBV-specific T-cell recovery.6,7 In EBV-associated HL and 
extranodal nasal-type NK/T-cell lymphoma, a plasma 
EBV DNA load at diagnosis is an indicator of disease 
activity and is associated with an unfavorable progno-
sis.8-13 The detection and quantification of EBV DNA in 
cerebrospinal fluid by PCR is considered diagnostic of 
primary central nervous system lymphoma (PCNSL) in 
the absence of biopsy.14 In NPC, the EBV DNA load in 

Table 2. Epstein-Barr Virus Latent Genes: Function and Patterns of Expression in Epstein-Barr Virus–Associated Malignancies

EBV Gene Function Latency I
BL

Latency II             
HL, NPC, Nasal  
T/NK-Cell Lymphoma 

Latency III   PTLD, 
PCNSL, HIV-
Associated DLBCL

EBNA1 Episomal EBV genome maintenance + + +
EBNA2 Activation of EBV and cellular gene expression - - +
EBNA3A,  
-3B, -3C 

Modulation of EBV and cellular gene expression - - +

EBNALP Coactivation with EBNA2 - - +
LMP1 Mimics CD40 signaling - + +
LMP2A Mimics BCR signaling ± + +
EBERs Noncoding RNAs + + +
BARTs Precursors for miRNAs + + +

BCR, B-cell receptor; BL, Burkitt lymphoma; DLBCL, diffuse large B-cell lymphoma; HL, Hodgkin lymphoma; miRNA, micro-RNA; NK, natural killer; NPC, nasopharyngeal 
carcinoma; PCNSL, primary central nervous system lymphoma; PTLD, post-transplant lymphoproliferative disorder. 

The symbols in the columns represent that latent viral protein expression is present (+), absent (-), or potentially present or absent (±).
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plasma is useful as a diagnostic and prognostic tool and in 
monitoring response to treatment.15,16

Epstein-Barr Virus–Associated 
Lymphoproliferative Disorders

The EBV-associated B- and T-cell lymphoproliferative 
disorders are a heterogeneous group of malignancies but 
share the feature of harboring latent EBV within tumor 
cells. Immunodeficiency states, such as HIV infection, 
congenital immunodeficiencies, post-transplant immu-
nosuppression, and chronic active EBV infection, increase 
the risk for EBV-associated lymphoma.

These lymphomas display different patterns of latent 
viral gene expression, with the potential for distinct novel 
treatment approaches, such as T-cell immunotherapy target-
ing EBV.17 However, at present, the standard treatment of 
EBV-associated lymphomas is usually identical to that of their 
EBV-negative counterparts, with the exception of PTLD. 

Burkitt Lymphoma
The isolation of virus particles from BL cell lines in 1964 
led to the discovery of EBV and its association with BL. 
BL is a highly aggressive non-Hodgkin lymphoma (NHL) 
characterized by a diffuse infiltrate of monomorphic, 
medium-size B cells in a “starry sky” pattern, imparted by 

Table 3. Novel Therapies for Epstein-Barr Virus–Associated Malignancies 

Therapy Clinical Applicationsa

 
Preclinical 
Studies

Adoptive T-cell therapy

Donor lymphocyte infusions PTLD after HSCT

Donor-derived (allogeneic) EBV CTLs
  (LCL- or EBV-peptide–stimulated)

PTLD after HSCT

Autologous EBV CTLs
  (LCL- or EBV-peptide–stimulated)

PTLD after SOT, HL, NPC; 
other EBV+ malignancies

Third-party HLA-matched EBV CTLs PTLD after SOT or HSCT; 
other EBV+ malignancies

Inhibitors of EBV-activated signaling pathways

Dasatinib (LMP2 activation of Lyn/Syk) BL

Akt inhibitor MK-2206 (LMP1, LMP2 activation of PI3K/Akt/mTOR)  Lymphoma, NPC NPC

Rapamycin (LMP1, LMP2 activation of PI3K/Akt/mTOR) BL

Bortezomib (LMP1 activation of NF-κB) Lymphoma, PTLD, NPC BL, lymphoma

Brentuximab vedotin (CD30 signaling) EBV/CD30+ lymphoma Gastric cancer

Lytic inducers (coupled with anti-herpesvirus agentsb)

Phenylbutyrate, arginine butyrate (HDAC inhibitors) Lymphoma, NPC NHL

Other HDAC inhibitors NPC NPC, NHL

Parthenolide BL

Arsenic trioxide NPC

5-Azacytidine Gastric cancer

Zidovudine (± chemotherapeutics) PCNSL BL

Gemcitabine + valproic acid NPC NPC

Bortezomib (± gemcitabine) Lymphoma, PTLD, NPC

EBV vaccines

Recombinant EBV gp350 Prevention of primary infection

Recombinant modified vaccinia virus Ankara EBNA1/LMP2 NPC
BL, Burkitt lymphoma; CTL, cytotoxic T lymphocyte; EBV, Epstein-Barr virus; HDAC, histone deacetylase; HLA, human leukocyte antigen; HSCT, hematopoietic 
stem cell transplant; LCL, lymphoblastoid cell line; LMP, latent membrane protein; mTOR, mammalian target of rapamycin; NF-κB, nuclear factor kappa B; NHL, 
non-Hodgkin lymphoma; NPC, nasopharyngeal carcinoma; PCNSL, primary central nervous system lymphoma; PI3K, phosphoinositide 3-kinase; PTLD, post-
transplant lymphoproliferative disorder; SOT, solid organ transplant. 

a Includes case reports and series, in addition to completed and ongoing clinical trials.

b Ganciclovir, valganciclovir.
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numerous benign macrophages, and by an extremely high 
proliferative index, with a Ki-67 approaching 100%. BL 
is divided into 3 subtypes: endemic (eBL), sporadic (sBL), 
and HIV-associated. eBL presents as tumors affecting 
the jaw and facial bones in young children in equatorial 
Africa, whereas sBL occurs worldwide and involves the 
gut, upper respiratory tract, or Waldeyer ring.18 HIV-
associated BL characteristically involves lymph nodes 
and bone marrow. BL is not universally associated with 
EBV.19 Although more than 90% of cases of eBL are EBV-
positive, only 5% to 20% of cases of sBL and 40% of 
cases of HIV-associated BL are EBV-positive.20-22

EBV gene expression in BL cells from primary tissue 
is highly restricted, with expression limited to EBNA1 
(latency I). The absence of consistent expression of the 
immunogenic EBNA and LMP proteins facilitates eva-
sion from cytotoxic T-lymphocyte (CTL)–mediated 
immunosurveillance and contributes to BL pathogenesis. 
Moreover, the use of adoptive cellular therapies in BL is 
limited by the insensitivity of EBNA1-restricted BL cells 
to CTL-mediated cytotoxicity. 

Because EBV is not essential in the pathogenesis 
of BL, the mechanisms by which EBV contributes to 
the development of BL remain uncertain.23 In eBL, it is 
believed that hyperstimulation of B cells and suppres-
sion of T-cell activity by chronic malarial infection is 
permissive for the reactivation of EBV in infected B cells, 
leading to a dramatic expansion of EBV-infected B-cell 
populations. In both EBV-positive and EBV-negative BL, 
constitutive activation of the c-MYC oncogene through 
its translocation into one of the immunoglobulin loci 
is the critical oncogenic event.22,24,25 Whether there is a 
causal relationship between EBV and the translocation of 
MYC is unknown. 

The optimal treatment of BL has yet to be defined, 
and patients with BL should be enrolled in clinical tri-
als whenever possible. Outside a clinical trial, treatment 
consists of intense combination chemotherapy regimens 
with CNS prophylaxis, such as fractionated cyclophos-
phamide, vincristine, doxorubicin, and dexamethasone 
(hyper-CVAD); cyclophosphamide, vincristine, doxo-
rubicin, and high-dose methotrexate (CODOX-M) 
with ifosfamide, etoposide, and high-dose cytarabine 
(IVAC); or the Cancer and Leukemia Group B (CALGB) 
9251 protocol, usually in combination with rituximab 
(Rituxan, Genentech/Biogen Idec).26-30 The less intensive 
regimens used in other types of NHL, such as cyclo-
phosphamide, doxorubicin, vincristine, and prednisone 
(CHOP), are not adequate therapy and result in frequent 
relapses.31,32 At present, EBV-negative and EBV-positive 
BLs are treated in an identical manner.

Novel agents focused on exploiting aspects of EBV 
biology are under investigation for the treatment of 

EBV-positive BL in preclinical studies. Although viral 
gene expression is generally restricted to EBNA1 (type 
I latency), LMP2A expression has been demonstrated 
in some primary BL biopsies when assessed by PCR and 
Western blotting.33,34 This finding provides the rationale 
for the development of inhibitors of LMP2A-induced cel-
lular targets, such as the PI3K/Akt/mTOR pathway. In a 
model of EBV-associated BL in Tg6/λ-MYC transgenic 
mice, the mTOR inhibitor rapamycin reversed spleno-
megaly and decreased tumor growth and metastasis in 
bone marrow.35 An alternative approach is the induction 
of lytic EBV infection, leading to cell lysis, coupled with 
anti-EBV agents. Thus, bortezomib (Velcade, Millennium 
Pharmaceuticals) may activate EBV lytic gene expression 
in BL cell lines in the context of endoplasmic reticulum 
stress, with C/EBPβ playing a role in this process,36 and 
lytic cytotoxicity induced by lactone parthenolide in 
combination with ganciclovir has shown promise as a 
virus-targeted therapy in BL in studies in vitro.37 Recently, 
high-throughput screen technologies have identified small 
molecular inhibitors of EBNA1, and further development 
of EBNA1 inhibitors may provide a treatment specific for 
EBV latent infection.38 

Hodgkin Lymphoma
The identification of EBV DNA, EBER RNA, and 
LMP1 in Reed-Sternberg (RS) cells in a subset of HL 
has confirmed the link between EBV and HL.39-41 Fur-
thermore, epidemiologic and case-control studies have 
shown an increased risk for EBV-positive but not EBV-
negative HL in individuals with a history of infectious 
mononucleosis or an altered serologic response to EBV 
latent antigens, supporting a causal association between 
EBV and HL.39,42-44 The prevalence of EBV varies widely 
among the pathologic subtypes of HL. EBV is present 
in 70% of cases of mixed-cellularity HL, 95% of cases 
of lymphocyte-depleted HL, and 10% to 40% of cases 
of nodular sclerosing HL, whereas nodular lymphocyte-
predominant HL is generally EBV-negative.45 HL arising 
in the setting of immunodeficiency (eg, HIV infection, 
iatrogenic immunodeficiency) is usually EBV-positive. 

EBV gene expression in RS cells is restricted to 
EBNA1, LMP1, LMP2A and -2B, and EBERs (type II 
latency).46 The EBV genomes found in RS cells are clonal, 
indicating that EBV infection precedes clonal expansion 
and implicating an etiologic role of the virus. However, 
the precise role of EBV in HL pathogenesis is uncertain.47 
Expression of LMP1 and LMP2A may prevent apoptosis 
through the induction of antiapoptotic proteins. RS cells 
(both EBV-positive and EBV-negative) produce immuno-
suppressive cytokines such as interleukin 10, interleukin 
13, and transforming growth factor-β.48,49 EBV infection 
of primary RS cells and RS cell–derived cell lines has been 
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shown to increase expression of the CCL20 chemokines, 
which in turn increases the migration of CD4+/FOXp3+ 
regulatory T cells (Tregs). This observation identifies a 
mechanism by which EBV-infected RS cells can recruit 
Tregs to the HL microenvironment and prevent immune 
responses against the virus-infected RS cells.50,51

Standard treatment of EBV-positive HL is not dif-
ferent from that for EBV-negative HL of the same stage, 
histology, and prognosis52 and is guided by clinical stage 
and risk stratification. Systemic chemotherapy with 
doxorubicin, bleomycin, vinblastine, and dacarbazine 
(ABVD), followed by involved-field radiotherapy when 
indicated, is considered the gold standard. The regimen of 
bleomycin, etoposide, doxorubicin, cyclophosphamide, 
vincristine, procarbazine, and prednisone (BEACOPP) 
is an alternative option for patients with high-risk, 
advanced-stage disease. 

The success of adoptive immunotherapy with ex vivo 
expanded allogeneic or autologous EBV-specific CTLs 
in PTLD (described below) has led to the application of 
this strategy in HL. Limited experience with EBV-specific 
CTLs in patients with recurrent, refractory, EBV-positive 
HL has shown promise.53-55 However, this strategy has 
not been widely adopted because of the complexity of the 
technique. In addition, the immune microenvironment 
of the tumor might impede the efficacy of CTLs in HL.

The incidence of classic HL is increased in settings 
of impaired immunity, including after transplant. Post-
transplant HL is invariably EBV-positive and should 
fulfill the diagnostic criteria for classic HL. The majority 
of patients are men, and all have received post-transplant 
immunosuppression.56-59 The time from transplant to the 
onset of the disease ranges from a few months to several 
years and is generally longer than that for non-Hodgkin 
PTLDs.59,60 In 50% of cases, the disease presents as extra-
nodal masses in liver or lung, and other extranodal sites 
can be involved.

The optimal treatment of post-transplant HL is not 
well defined. The clinical course is aggressive, and the 
outcome is poor. The majority of patients are initially 
managed by reduction or withdrawal of immunosuppres-
sion. The use of chemotherapy may be limited because 
of comorbidities, and the response rate is lower than in 
classic HL. Rituximab is highly effective in non-Hodgkin 
PTLD,61 and some patients with post-transplant HL 
respond to rituximab.

Post-transplant Lymphoproliferative Disorder
It is widely recognized that the incidence of lymphopro-
liferative disorders is increased in transplant recipients of 
both solid organ and hematopoietic stem cell allografts. 
The vast majority of these PTLDs are associated with 
EBV. The process likely begins with dysregulated EBV-

driven B-cell proliferation due to impaired EBV-specific 
T-cell–mediated immune surveillance of infected recipi-
ent or donor B cells. This leads to a dramatic expansion 
of the EBV-infected B-cell population, the acquisition of 
mutations, and ultimately, malignant transformation.62

Approximately 95% of all PTLDs are associated with 
EBV, as shown by EBER expression in tissue-infiltrating 
lymphocytes and/or immunoblasts. There are 4 major 
World Health Organization (WHO) categories of PTLD: 
early lesions, polymorphic PTLD, monomorphic PTLD, 
and classic HL-type PTLD. In practice, a clear separation 
between the WHO categories of PTLD is not always pos-
sible. Early lesions, polymorphic PTLD, and monomor-
phic PTLD probably represent a pathologic spectrum. 
Early lesions are polyclonal/oligoclonal, whereas poly-
morphic PTLD and monomorphic PTLD are usually 
monoclonal by immunoglobulin gene rearrangement and 
EBV episomal testing, although the latter is not routinely 
performed in clinical practice.63 The diagnosis of PTLD 
is based upon an evaluation of histologic, immunophe-
notypic, virologic, and genetic studies interpreted in the 
context of the clinical scenario.63-65

PTLD-like tumors occasionally occur in patients 
without transplants who are immunosuppressed for other 
reasons, such as patients with rheumatoid arthritis who 
are on methotrexate therapy. As in PTLD, these tumors 
are often EBV-positive and respond favorably to immune 
reconstitution. 

The incidence of PTLD is greatest within the first 
year after transplant. Major factors related to the risk for 
its development are the degree of T-cell–specific immuno-
suppression and the EBV seronegative status of the recipi-
ent. Specific risk factors for PTLD after hematopoietic 
stem cell transplant (HSCT) include T-cell depletion of 
the allograft, T-cell–depleting conditioning regimens, the 
use of antithymocyte globulin, acute and chronic graft-
versus-host disease (GVHD), second allogeneic HSCT, 
and age older than 50 years.66 

Management strategies that may reduce the inci-
dence of overt PTLD include limiting exposure to aggres-
sive immunosuppressive regimens by judicious tapering 
to maintenance target levels and the use of anti-EBV 
prophylaxis (eg, ganciclovir) to prevent EBV reactiva-
tion.67-69 Preemptive treatment of the reactivation of EBV 
infection, as determined by monitoring the EBV load in 
peripheral blood, with rituximab or with reduced immu-
nosuppression can prevent PTLD and clear EBV from 
the peripheral blood.7 Thus, many transplant centers 
routinely incorporate post-transplant surveillance of the 
EBV DNA load and preemptive treatment strategies into 
their transplant protocols. 

PTLD is a life-threatening complication of alloge-
neic transplantation. Early in its course, PTLD may cause 
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minimal or no symptoms. When it is symptomatic, the 
manifestations are variable and include constitutional 
symptoms (eg, fever, weight loss, fatigue), lymphade-
nopathy, and dysfunction of affected organs (eg, severe 
hepatitis, pneumonia, colitis, nephritis). Involvement of 
extranodal sites is common, including the CNS. In 25% 
of patients, the allograft itself is infiltrated with PTLD, 
which can cause allograft failure.70,71 Laboratory studies 
often demonstrate an elevated lactate dehydrogenase level 
and monoclonal protein in serum or urine. 

Treatment for PTLD depends on the subtype of 
PTLD, type of allograft, need for rapid cytoreduction, 
and treatment-associated toxicities. Treatment entails a 
reduction of immunosuppression to permit restoration 
of the EBV-specific CTL response, unless graft rejec-
tion precludes this intervention. Other options include 
rituximab, cytotoxic chemotherapy, and radiation. Single-
agent rituximab is highly effective and is considered the 
first-line treatment at many transplant centers.61 Because 
of the heterogeneity of PTLD and the unique features of 
each case, approaches to both initial treatment and salvage 
therapy must be individualized. In general, in the absence 
of fulminant disease, treatment proceeds in a stepwise 
fashion, with the most intensive therapies reserved for 
patients with pathologically and clinically aggressive or 
recurrent disease. Notably, EBV-negative PTLD occurs 
later (usually 2 years) after transplant and does not respond 
as well to the withdrawal of immunosuppression.72 

CNS involvement is a particularly poor prognostic 
feature of PTLD.73,74 Treatment strategies include the use 
of antiviral agents, immunotherapy, radiation therapy, and 
chemotherapy, but outcomes remain dismal. Although 
the use of intense chemotherapy poses unique risks to 
transplant recipients, high-dose methotrexate can be 
efficacious and tolerable in patients with CNS PTLD.75-78

Adoptive transfer of EBV-specific CTLs is a highly 
effective investigational approach for the prevention or 
treatment of PTLD. PTLDs are characterized by the 
expression of all of the immunodominant EBV latency 
proteins (latency III), and thus, in contrast to BL (latency 
I), they are amenable to T-cell–based cellular therapies. 
This strategy typically uses EBV-infected lymphoblastic 
cell lines to repetitively stimulate donor-derived T cells 
(or autologous T cells in the setting of a solid organ 
transplant), followed by ex vivo expansion over several 
weeks and finally transfer to the affected patient.79-81 In 
contrast to unmanipulated donor lymphocyte infusions, 
EBV-specific CTLs can reconstitute an in vivo immune 
response without inducing GVHD. Prophylactic infu-
sions of EBV-specific CTLs prevent PTLD in virtually all 
patients, and the clinical outcomes of patients with overt 
PTLD are favorable, with the majority of patients achiev-
ing durable remissions.79,82,83 However, the widespread use 

of adoptive cellular therapy for PTLD and other EBV-
associated malignancies is limited by the need for special-
ized facilities and the length of time required to prepare 
the EBV-specific CTLs (8-12 weeks). Recent efforts have 
focused on developing technologies that will decrease the 
time required to produce EBV-specific CTLs and thus 
broaden the applicability of this approach, such as rapid 
ex vivo culture, rapid isolation of EBV peptide–selected 
CTLs, and the use of banked, “third party” human leuko-
cyte antigen–typed EBV-specific T-cell lines.84-87

HIV-Associated Non-Hodgkin Lymphomas
HIV infection is associated with a dramatic increase 
in the risk of developing NHL; 40% of these cases are 
associated with EBV. The risk of HIV-associated NHL, 
also known as AIDS-related NHL, is related to the degree 
of immune dysfunction and is greatest in patients with 
low CD4-positive cell counts (<100/μL) and high HIV 
loads. Although the incidence of HIV-associated NHL 
has decreased with the widespread use of highly active 
combination antiretroviral therapy (ART), these diseases 
continue to make up a substantial portion of NHLs in the 
United States (6% of diffuse large cell B-cell lymphomas 
[DLBCLs], 20% of BLs, and 27% of PCNSLs). 

NHLs arising in the setting of HIV are generally dif-
fuse aggressive or highly aggressive subtypes. In contrast to 
PTLD, which includes polyclonal lesions, HIV-associated 
NHLs are always monoclonal. The most common forms 
are DLBCL with immunoblastic or centroblastic histology, 
BL, and PCNSL. Less common lymphomas, encountered 
almost exclusively in HIV-infected patients, include plas-
mablastic lymphoma of the oral cavity type and human 
herpesvirus 8/Kaposi sarcoma herpesvirus–positive primary 
effusion lymphoma (PEL) and its solid variant. Although 
40% of HIV-associated lymphomas are EBV-positive, the 
incidence varies with the histologic subtype and site of 
disease. EBV is present in nearly 100% of PCNSLs, PELs, 
and plasmablastic lymphomas; in 70% of DLBCLs (100% 
of immunoblastic and 40% of centroblastic DLBCLs); and 
in just 30% of BLs. EBV-positive HIV-associated NHLs 
typically exhibit plasmacytoid-plasmablastic differentiation 
as a unifying histopathologic feature.88 

EBV-associated lymphomagenesis in HIV infec-
tion is attributed to the transforming properties of EBV 
in conjunction with impaired immunosurveillance of 
EBV. In contrast to PTLD, EBV-positive HIV-associated 
NHLs are always monoclonal, implicating an important 
pathogenetic role of superimposed genetic events. Altered 
EBV antibody patterns and decreased EBV-specific T-cell 
responses are shown to precede the onset of EBV-positive 
HIV-associated NHL,89-91 although the EBV DNA load 
in peripheral blood mononuclear cells is not predictive of 
lymphoma occurrence in patients with HIV infection.92 In 
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healthy individuals, CD27-positive memory B cells are the 
main carriers of EBV infection. Despite the loss of memory 
B cells in HIV, elevated EBV loads are observed, suggesting 
that populations of B cells other than memory B cells are 
implicated in EBV persistence and lymphomagenesis.93

As with NHL in HIV-negative patients, the choice 
of chemotherapy regimen, need for CNS prophylaxis, 
and role of radiotherapy are dictated by the pathologic 
subtype, stage, and institutional preference. The inclusion 
of ART in management improves the response rate and 
survival and decreases opportunistic infections in patients 
with HIV-associated NHL undergoing chemotherapy. 
In contrast to PTLD, HIV-associated NHLs are inad-
equately treated with immune reconstitution alone (ie, 
the initiation of ART). Special considerations in treat-
ment include the increased risk for infection. Patients 
should receive growth factor support and  Pneumocystis 
prophylaxis with consideration of enteric antibiotic, anti-
herpetic,  and/or antifungal  prophylaxis.  The inclusion 
of rituximab improves remission rates in CD20-positive 
HIV-associated NHLs, although it may be associated 
with  an increased risk for infectious deaths in patients 
who have severe lymphopenia (CD4-positive cell count 
<50/μL).94 Pooled analysis from 19 prospective trials 
revealed that the inclusion of rituximab, the use of a dose-
intense regimen such as doxorubicin, cyclophosphamide, 
vindesine, bleomycin, and prednisone (ACVBP) or an 
infusional regimen such as etoposide, prednisone, vincris-
tine, cyclophosphamide, and doxorubicin (EPOCH), and 
concurrent ART are all associated with improved overall 
survival in HIV-associated NHL.95 Recent evidence sug-
gests that incorporating high-dose methotrexate into 
initial therapy results in lower rates of CNS relapse in 
patients with high-risk DLBCL.96

The presence of EBV has been exploited to develop 
novel therapies for HIV-associated NHLs. The strategy of 
pharmacologic induction of lytic infection is thought to 
induce cytotoxicity and render tumor cells susceptible to 
antiherpes nucleoside analogues (eg, ganciclovir), which 
require phosphorylation by the lytic-specific EBV thymi-
dine kinase.97,98 Several agents, including short-chain fatty 
acids and other histone deacetylase inhibitors, bortezomib, 
and chemotherapeutic agents, disrupt EBV latency and 
sensitize EBV-transformed B cells to nucleoside antiviral 
agents in vitro.36,97,99,100 This strategy has shown promise 
in a pilot study of arginine butyrate in combination 
with ganciclovir in patients with refractory EBV-positive 
lymphoid malignancies.100 Zidovudine (AZT), alone or 
with chemotherapy (eg, hydroxyurea), induces apopto-
sis in EBV-positive BL cell lines, possibly by inhibition 
of NFκB and activation of the lytic cycle.101 Thus, the 
combination of AZT with methotrexate or hydroxyurea, 
both of which penetrate the blood-brain barrier, may be 

of particular benefit in PCNSL, and responses in patients 
with PCNSL have been reported anecdotally with these 
combinations.102 

Other novel therapeutic approaches exploit the acti-
vation of signal transduction pathways by EBV, including 
NFκB and PI3K/Akt/mTOR. Bortezomib and rapamy-
cin have shown promise in preclinical and limited clinical 
studies for the treatment of PEL, which responds poorly 
to traditional chemotherapy.103-105 Other novel agents have 
shown promise in PEL cell lines or murine xenograft PEL 
models, including interferon alfa combined with arsenic 
trioxide, the anti-CD30 drug conjugate brentuximab 
vedotin (Adcetris, Seattle Genetics), and histone deacety-
lase inhibitors.105-108 There have been isolated reports of 
success with intracavitary cidofovir and with systemic 
cidofovir combined with interferon alfa and ART.109,110 

Rare EBV-Associated B-Cell Lymphoproliferative 
Disorders
EBV-Positive Diffuse Large B-Cell Lymphoma of the 
Elderly (“Senile Type”). Although DLBCL in immuno-
competent patients is rarely EBV-positive, the uncommon 
EBV-positive DLBCL of the elderly (“senile type”) is an 
EBV1-positive variant of DLBCL that occurs in patients 
older than 50 years without any known immunodefi-
ciency or prior lymphoma. It is postulated that chronic 
inflammation and the immune senescence of aging may 
be cofactors in the development of this subtype. Although 
rare in Western countries, DLBCL of the elderly accounts 
for 8% to 10% of cases of DLBCL in Asia.111 

The histopathology is characterized by RS-like cells 
and polymorphic features. Expression of CD30, EBER, 
and LMP1 is detectable in more than 90% of cases, 
and both latency II and latency III patterns of EBV 
gene expression have been described. Clonality of the 
immunoglobulin genes and EBV genome can usually be 
detected by molecular techniques. DLBCL of the elderly 
is characterized by prominent NFκB pathway activation, 
likely mediated by EBV.112,113 Treatment consists of the 
rituximab (R)-CHOP regimen, although in significant 
numbers of patients the disease is refractory to chemo-
therapy. The clinical course is aggressive, and patients 
have a median survival of about 2 years.114

Lymphomatoid Granulomatosis. Lymphomatoid granu-
lomatosis (LYG) is a rare EBV-associated lymphoprolif-
erative disease. Although most patients with LYG are not 
overtly immunocompromised, the disease is encountered 
in patients with genetic and iatrogenic immunodeficiency 
syndromes. LYG invariably involves the lungs in a nodular 
pattern, but it may also affect the CNS, skin, liver, and 
kidneys.115 Pathologically, it is characterized by an angio-
centric and angiodestructive infiltrate made up of a small 
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number of atypical clonal EBV-positive B cells in a poly-
morphous inflammatory background of T cells, plasma 
cells, and histiocytes. The EBV-positive B cells of LYG 
are CD20- and CD30-positive and are seen in increasing 
numbers with increasing grade. Low-grade LYG occasion-
ally undergoes spontaneous remission and is managed with 
strategies designed to enhance the host’s immune system 
(eg, withdrawal of immunosuppressive agent, interferon). 
High-grade LYG has inferior outcomes and is best man-
aged with chemotherapy; regimens like R-CHOP and 
high-dose cytarabine may result in long-term remission.116 
LYG can lead to progressive organ failure or transform into 
overt EBV-positive lymphoma without appropriate recog-
nition and management. Advances in our understanding of 
the biology of LYG, particularly the role of EBV in patho-
genesis, offer promise for the development of improved 
management strategies.

DLCBL Associated With Chronic Inflammation. 
DLBCL associated with chronic inflammation, most 
often with chronic pyothorax, is a rare form of large 
B-cell  NHL, often developing after 20 to 40 years in 
patients with pyothorax or tuberculous pleuritis.117 EBV is 
consistently detectable in the neoplastic cells in this entity, 
and latent EBV gene expression is type III in most cases. 
DLBCL associated with chronic inflammation affects 
older individuals, and the majority of cases have been 
reported from Japan. Patients present with fever, chest 
pain, pleural effusion, and tumor masses in the thoracic 
cavity. Laboratory studies show leukocytosis and inflam-
matory reactive changes. The histopathology is character-
ized by a diffuse proliferation of lymphoid cells consisting 
of atypical large cells positive for CD45 and CD20 and 
small lymphoid cells.118-120 Cell lines and animal models 
are needed to better understand this rare  lymphoma.121 
The use of R-CHOP may lead to complete remission.122

T-Cell Lymphomas 
The majority of EBV-associated malignancies are of B-cell 
origin, likely reflecting the transforming potential of EBV 
in B cells and the large reservoir of latently infected B 
cells. However, a number of uncommon T-cell lympho-
proliferative diseases have been associated with EBV, 
especially in Asia and Latin America. Most EBV-asso-
ciated T-cell lymphomas exhibit a cytotoxic phenotype, 
with type II latency (EBNA1, LMP1, LMP2A and -2B, 
EBERs). Because T cells are refractory to EBV infection 
in vitro, the mechanism by which EBV infects the T cells 
is unknown. Some EBV-associated T-cell lymphomas 
arise in the backdrop of chronic active EBV infection 
or immunosuppression, and the presence of EBV often 
confers a worse prognosis. The pathogenetic role of EBV 
in T-cell lymphomas is largely unknown. 

The most common EBV-positive T-cell lympho
proliferative diseases are angioimmunoblastic T-cell lym-
phoma and extranodal nasal-type NK/T-cell lymphoma. 
Rare entities reported to be EBV-positive include a subset 
of peripheral T-cell lymphomas, enteropathy-type T-cell 
lymphoma, γδ T-cell lymphomas (hepatosplenic and 
nonhepatosplenic), T-cell lymphoproliferative disorders 
after chronic EBV infection, EBV-associated cutaneous 
T-cell lymphoproliferative disorders (especially in Asia), 
and aggressive NK-cell leukemia/lymphoma.

Angioimmunoblastic T-Cell Lymphoma. Angioimmuno-
blastic T-cell lymphoma (AITL) is a CD4-positive peripheral 
T-cell lymphoma; the malignant cell of AITL corresponds to 
a subset of follicular helper T cells.123,124 EBV is detected in up 
to 100% of lymph nodes involved by AITL.125 However, in 
situ hybridization techniques have demonstrated EBV only 
in infiltrating immunoblastic B cells, which may be clonal.126 
Thus, AITL is actually an EBV-negative T-cell malignancy 
that is tightly linked to infiltrating EBV-positive B cells. The 
pathogenetic relationship of EBV to AITL remains uncer-
tain, and interestingly, EBV-positive B-cell lymphomas have 
complicated the treatment of AITL.

Clinically, AITLs are characterized by generalized 
lymphadenopathy, hepatosplenomegaly, systemic symp-
toms, and an aggressive course with a poor response to 
therapy. Polyclonal hypergammaglobulinemia, positive 
Coombs test, autoimmune phenomena, cryoglobulins, 
and cold agglutinins may be seen.127,128 Treatment gener-
ally consists of CHOP-like chemotherapy, although there 
is no consensus regarding the optimal treatment. The sur-
vival rates appear higher with autologous HSCT in first 
complete remission, and therefore consolidative auto-
HSCT should be considered in appropriate patients.129

Extranodal Nasal-Type T/NK-Cell Lymphoma. Nasal-
type T/NK-cell lymphoma is a rare tumor that is invari-
ably associated with EBV. It is an angiodestructive tumor 
of the nasal cavity and has a geographic predilection for 
Asia (especially China) and Central America.130 Distinc-
tive genotypic and phenotypic features of these lympho-
mas include absence of T-cell antigens, expression of the 
NK-cell marker CD56, and absence of T-cell receptor 
gene rearrangement. The nasal cavity is the most frequent 
site of involvement, but the tumor may involve extranodal 
sites, such as the skin, testis, kidney, upper gastrointestinal 
tract, and orbit.131 Some nasal NK/T-cell lymphomas have 
been associated with chronic active EBV infection.132,133 
An elevated EBV DNA load in plasma before treatment is 
associated with a poor prognosis in early-stage disease and 
an inferior response to chemotherapy.11,13 

The extent of the disease dictates the choice of treat-
ment. Localized disease is managed by radiotherapy, often 
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with concurrent chemotherapy; disseminated disease is 
treated with chemotherapy (eg, CHOP, CHOP-Bleo, 
l-asparaginase–containing regimens).134,135 Large random-
ized trials comparing treatments for this disease entity 
are lacking. The prognosis of patients with disseminated 
disease is poor.

Epstein-Barr Virus–Associated Epithelial 
Malignancies

EBV is an etiologic factor in nonkeratinizing NPC and a 
subset of gastric carcinoma. The pathogenetic role of EBV 
in epithelial carcinogenesis is not completely understood. 
As in EBV-associated lymphomas, infection in these epi-
thelial malignancies is latent, with expression of EBNA1, 
LMP2A, and LMP2B and variable expression of LMP1, 
as well as the nontranslated EBERs and BARTs. The 
LMP oncoproteins are believed to play a direct oncogenic 
role in EBV-associated epithelial malignancies, given 
their profound effects on cellular gene expression and 
cell growth and survival. The recent discovery of EBV-
encoded micro-RNAs showed that these micro-RNAs 
function as post-transcriptional gene regulators and may 
play a role in carcinogenesis.136-138 

EBV infection alone is insufficient to transform 
epithelial cells, and multiple genetic and epigenetic abnor-
malities have been described in EBV-associated NPC and 
gastric cancers. In NPC, recurring chromosomal aberra-
tions (eg, loss of 3p, 9p, and 14q; gain of 12p and 3q) and 
widespread hypermethylation of the genome result in inac-
tivation of key tumor suppressor genes (eg, p16/CDKN2A, 
RASSF1A, E-cadherin/CDH1) and activation of key 
oncogenes (eg, PI3K/PIK3CA).139 Several lines of evidence 
in NPC suggest that preexisting genetic alterations in pre-
cursor dysplastic lesions are important in susceptibility to 
EBV infection and maintenance of latency, and that EBV 
promotes additional epigenetic change. 

Nasopharyngeal Carcinoma
The geographic incidence of undifferentiated nonke-
ratinizing NPC (type III) varies widely. The incidence 
is highest in southern China, where NPC is the fourth 
most common cancer diagnosis. In contrast to keratin-
izing squamous cell NPC, endemic NPC is generally 
associated with EBV.140,141 Clonal EBV genomes have 
been detected in precursor dysplastic lesions of the 
nasopharynx and in invasive NPC, supporting a possible 
causal link between EBV and NPC.142,143 EBV serologies 
in NPC are aberrant, characterized by the presence of 
immunoglobulin A (IgA) antibodies directed against 
EBV viral capsid antigen (VCA IgA) and early antigen 
(EA IgA). The plasma EBV load correlates with the 
diagnosis and the pre- and post-treatment prognosis of 

NPC, and it is useful in response assessment and post-
treatment surveillance.144-147 EBV serologies and EBV 
DNA load have been useful in screening for NPC in 
areas where NPC is endemic.148,149 

Currently, the standard treatment of NPC is radio-
therapy for stage I disease and concurrent chemoradio-
therapy with cisplatin for locally advanced disease in 
stages II through IVB (reviewed by Ma and colleagues150). 
Although current treatments for NPC have improved the 
5-year survival rate to 50%, metastatic disease for which 
there is no curative therapy eventually develops in 20% to 
25% of patients.

As in EBV-associated lymphomas, the presence of 
EBV has been exploited in the development of novel 
treatments for recurrent and metastatic NPC. These 
approaches include targeting EBV-activated signal trans-
duction pathways, lytic cycle induction, and immuno-
modulation with autologous EBV-specific CTLs or EBV-
specific vaccines.151-157 Chemotherapy in combination 
with targeted therapy or immunotherapy may further 
improve treatment results in the future.

Epstein-Barr Virus–Associated Gastric Cancer
The role of EBV in gastric cancer was first suggested in 
studies of patients from Asia.158,159 EBV genomes were 
identified within the gastric carcinoma and adjacent 
dysplastic epithelium but were absent in surrounding 
lymphocytes, stromal cells, intestinal metaplasia, and 
normal mucosa. In addition, the detection of monoclonal 
EBV episomes in EBV-associated gastric cancer strongly 
suggested that EBV plays an etiologic role in gastric carci-
nogenesis. EBV-associated gastric cancer is characterized 
by global and nonrandom CpG island methylation in the 
promoter region of many cancer-related genes with asso-
ciated silencing, including PTEN, p16, and E-cadherin 
(CpG island methylation phenotype, or CIMP).160,161 The 
pattern of latent EBV gene expression is more restricted 
than in NPC in that LMP1 is not expressed in EBV-
associated gastric cancer.162 Histopathologically, there 
are 2 subtypes of EBV-associated gastric cancer—lym-
phoepithelioma-like carcinoma and conventional gastric 
adenocarcinoma—and they make up nearly 10% of all 
cases of gastric cancer. 

There have been conflicting data in the literature 
regarding the clinicopathologic characteristics and 
prognosis of EBV-associated gastric cancer. Overall, it is 
believed that the clinical and molecular characteristics of 
EBV-associated gastric cancer may be quite different from 
those of conventional gastric adenocarcinoma.163 Further 
studies are needed to determine the effect of EBV on the 
clinical course and survival of patients with gastric cancer, 
and whether there are any treatment implications related 
to the presence of EBV.
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Summary

EBV possesses potent growth-transforming properties, 
and its role in the pathogenesis of a range of lymphoid 
and epithelial  malignancies  is well established. Over 
the past 2 decades, an evolving understanding of the 
diversity and pathobiology of EBV-related malignancies 
has paralleled the evolution of EBV-based therapeutic 
approaches. Although  EBV-specific therapies remain 
largely investigational, several strategies exploiting aspects 
of EBV pathobiology have shown promise. These strate-
gies include inhibition of viral targets and EBV-activated 
cellular targets, disruption of latent infection coupled 
with antiviral drugs, and adoptive cellular therapies. It is 
anticipated that ongoing studies of the pathobiology of 
specific EBV-associated malignancies will lead to novel 
therapies appropriate for each disease. 
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