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Key Statistical Concepts in Cancer Research
Qian Shi, PhD, and Daniel J. Sargent, PhD

Abstract: In this article, we provide a high-level overview of 

statistical concepts related to study design and data analysis in 

oncology research. These concepts are discussed for 2 main types 

of clinical research: (1) observational studies, which focus on 

biomarker discovery in order to predict disease risk and progno-

sis, and (2) prospectively designed, well-controlled clinical trials, 

which are critical for the development of new cancer treatments. 

Throughout the article, we emphasize the importance of appro-

priate design and prospectively determined analysis plans. We 

also hope to promote effective collaboration between oncology 

investigators and statisticians who center their research on the 

development of cancer treatments. 

 

Introduction

Oncology research is a highly active field of discovery that has 
substantial challenges and, most importantly, huge unmet needs 
in patient care. In this setting, it is critical to perform scientifically 
sound studies that are reproducible and generalizable, have a high 
degree of credibility, and can be applied efficiently to real-world 
practice. This need has led to the integration of statistical expertise 
into multiple aspects of oncology research. 

When research—or even a single experiment—involves human 
beings, substantial complexities exist owing to multidimensional varia-
tions in genetic, behavioral, environmental, and sociological factors. 
Many of these factors are uncontrollable or even unobservable, and can 
have unpredictable interactions with each other, creating even more 
complexity. In statistics, the term error is used to describe this variation 
in patient outcomes due to unknown or uncontrollable factors. Gener-
ally speaking, there are 2 types of error: random error and bias. 

Random error, which is purely due to chance, commonly is 
caused by sampling variability, measurement error, and other sources 
of “noise.” Random error can be quantified by determining the vari-
ability in patient outcomes that exists among similar patients. By 
applying the knowledge of probability and statistical theory, the 
magnitude and likelihood of the errors resulting from chance can be 
estimated. In general, the impact of random errors on a study can be 
reduced by using more participants. 
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Unlike random errors, which have no preferred direc-
tion, a bias represents a distortion of a true state and is not 
a consequence of chance alone. For example, differences 
in baseline disease characteristics between 2 treatment 
groups can cause a bias. Unlike random error, averaging 
after repetition or recording additional observations can-
not reduce this bias. There are many statistical methods 
that can be applied to correct for bias and thus allow accu-
rate inferences to be drawn from the results; for example, 
using multivariable modeling to adjust for confounding 
factors in retrospective studies. However, the ability to 
reduce bias using statistical methods is limited to factors 
that are known and measured. If bias from unknown 
sources is greater than bias from known sources, these sta-
tistical methods will not be useful. Randomization is one 
of the fundamental principles of prospective clinical trials 
because it balances known and unknown factors between 
comparison groups, thereby reducing bias.

In any medical research, reducing random error and 
controlling systematic bias are essential to providing valid 
and generalizable results. These goals cannot be achieved 
without collaboration between clinical and statistical 
experts. In this article, we provide an overview of statistical 
methods relevant to 2 major types of oncology research: 
observational studies and clinical trials. In observational 
studies, the primary factor of interest (ie, the explanatory 
or independent variable) cannot be manipulated; instead 
these studies are used to assess potential associations 
between risk or prognostic factors and disease outcome. 
By contrast, in clinical trials the treatments under evalu-
ation are fully defined by the study and can be manipu-
lated. Our intention is to provide the reader with insight 
regarding the use of statistics (and collaborations with 
statisticians) in the design and analysis of medical stud-
ies, rather than to provide all the details required for an 
investigator to perform his or her own analyses. Several 
excellent statistical textbooks provide the technical details, 
and we cite several such references.

Observational Studies

Overview
Oncology research is entering a new era that is charac-
terized by increased understanding of biological mecha-
nisms. Therefore, the identification of disease-related 
biomarkers and their underlying mechanism of action is 
a critical step in cancer treatment development, especially 
in regard to personalized treatment. Examples include 
gene mapping to better understand the risk of developing 
various cancers, development of risk classification tools to 
better predict patient outcomes, and molecular discovery 
for targeted therapies. These studies can be described 
as association studies, which evaluate the relationships 

between explanatory factors and disease outcomes. The 
distinguishing feature of observational studies is that 
these explanatory factors have their own natural course; 
ie, the investigator can observe but cannot intentionally 
alter the factors’ status. These studies commonly are based 
on hospital or institutional cohorts, translational studies 
derived from completed clinical trials, or meta-analyses 
that combine data from multiple studies. 

Owing to the large number of potential hypoth-
eses and the discovery-based nature of clinical studies, 
investigators may be overwhelmed by the large number 
of potential analyses possible for a data set, or they can 
be distracted by signals that may not be true (ie, false- 
positives). This is why clinically and statistically sound 
study design and prospectively defined analysis plans are 
essential. The study design includes many aspects, such as: 
(1) relevant, focused, and precise objectives; (2) effective 
and feasible sampling schema (eg, correctly targeted popu-
lations, sufficient sample size, and technique- appropriate 
selection procedures); (3) clinically and statistically rel-
evant outcomes; (4) careful control of confounding and 
bias; and (5) rigorous data collection and quality control. 
Prospectively defining a statistical analysis plan is a criti-
cal step in creating an executable study, because it allows 
researchers to discover and address the potential flaws and 
inefficiencies in the study design. This plan describes the 
patient selection procedures, data to be collected, proper 
statistical methods, analytical steps, data presentation 
methods, and data interpretation principles. It is vital 
that thorough planning is done before beginning a study, 
because, as noted by Steyerberg,1 “[a] sophisticated analy-
sis cannot salvage a poorly designed study, or poor data 
collection procedures.” 

Basic Statistical Methods of Testing Associations
There are 3 main types of observational studies: cross- 
sectional, cohort, and case-control. In cross-sectional 
studies, the collected data (eg, environmental exposure 
and disease status) are assessed at a single preselected 
time, and their association is commonly measured by a 
correlation coefficient. Cohort studies, in which subjects 
are selected based on risk factors (eg, environmental 
exposure) and are followed for disease status until a future 
point, generally provide more comprehensive data than 
cross-sectional studies. An important association mea-
surement in cohort studies is relative risk (RR), which is a 
ratio of the disease incidence rate in exposed vs unexposed 
subjects. When disease incidence is rare, long follow-up 
times or very large sample sizes are needed to conduct a 
cohort study. In this situation, a case-control study can be 
considered. Subjects in a case-control study are selected 
based on disease status, with or without matching known 
risk factors. The potential risk factors under consideration 
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are ascertained by looking back in time. Because subjects 
are selected based on their disease outcomes, the exposure-
specific disease rates and RR cannot be estimated. Instead, 
an odds ratio (OR)—the ratio of the odds of exposure 
among disease cases vs nondisease cases—is commonly 
used to quantify the association between the risk factor 
and the disease rate. The OR can be estimated regardless 
of the study design. If the disease is rare, the OR can be 
used as an approximation of the RR. 

Confidence intervals for these measurements can be 
calculated and used to determine whether the observed 
association is statistically significant (ie, different from 
the null hypothesis, which is that no association exists). 
Different statistical methods are appropriate depending 
on the nature of the risk factors (eg, continuous, count, 
nominal [without order between categories], or ordinal 
[with order between categories] variables). Hypothesis 
testing methods, such as the Chi-square test, commonly 
are used when the risk factor and outcome are both cat-
egorical. The Chi-square test conveys only the existence 
or nonexistence of an association between an exposure 
and an outcome, and not its nature or strength. With 
an ordinal risk factor (eg, the categories of nonsmoker vs 
former smoker vs current smoker), the Cochran-Armitage 
trend test provides better power to detect a linear trend in 
disease rate according to the levels of the risk factor. When 
there is more than 1 risk factor of interest, regression 
analysis (eg, logistic regression) is appropriate, because it 
adjusts for confounders and identifies effect modifiers. We 
refer readers to the categorical data analysis textbook of 
Agresti2 for more details.

Prognostic studies in cancer research commonly are 
used to identify disease-related markers that can predict 
a patient’s prognosis. Time-to-event analysis (or survival 
analysis) is a statistical method used to assess this marker-
prognosis association. Time-to-event outcomes are con-
tinuous variables defined as the time from the beginning 
of observation (eg, diagnosis date or surgery date) to the 
occurrence of the relevant event(s) (eg, disease recurrence 
or death). Analyses of these studies differ from other types 
of statistical analyses because the event may not be observ-
able for all subjects owing to loss of follow-up, competing 
risks, or termination of follow-up because of financial, 
logistical, or study duration considerations. Although the 
event is not observed in some subjects, partial informa-
tion that the subject was event-free until the last known 
date still can be valuable. These data are called censored 
data. A common way to summarize censored survival data 
is to estimate the Kaplan-Meier curve,3 which shows the 
proportion of subjects who are event-free at each point 
that an event is observed. The Kaplan-Meier curve can 
provide an estimate of the event-free rate at any point 
during the follow-up period, and allows for censoring 

and varying lengths of follow-up. Common descriptive 
 statistics associated with Kaplan-Meier curves are median 
survival time and survival rates for a specific time. Con-
fidence intervals also are used to interpret these results. 
Some types of censoring may require advanced analytic 
methods; for example, the competing risk model is used 
when the event of interest is not observed owing to the 
occurrence of another competing event.

When comparing time-to-event outcomes between 
patient groups, the most common method used is the 
log-rank test. The log-rank test determines whether the 
hazard rates are different between 2 or more groups. Here, 
the hazard rate refers to the rate of change in the cumula-
tive probability of an event happening at a given point 
relative to the corresponding event-free probability. To 
quantify the association between a prognostic factor and 
the survival outcome, the hazard ratio (ie, the ratio of the 
hazard rates of 2 populations) can be estimated by a Cox 
proportional hazards model.4 Cox regression is a power-
ful method that can assess the impact of multiple factors 
on survival outcomes simultaneously. This model also can 
control for confounders, identify interaction effects, and 
provide risk predictions. We refer readers to a survival 
data analysis textbook5 for additional details.

It is important to point out that no matter which 
study design is used to assess potential disease risk or 
prognostic factors, a significant association in an observa-
tional study is not sufficient to prove a causal relationship. 
For example, an association between gene expression and 
disease risk may actually be noncausal owing to underly-
ing factors, such as linkage disequilibrium between the 
studied gene and the truly causal gene, or an unobserved 
intermediate association between a gene and disease. 
However, by appropriately controlling for confounders 
and reducing biases, observational studies can provide 
sufficient evidence to support further biological studies 
on a disease risk or prognostic factor. 

Individualized Risk Classifications and Outcome 
 Predictions
Association studies provide population-level results, and 
do not necessarily show the absolute risk prediction of 
an individual patient. In clinical practice, there are many 
predictors of patient survival that are based on a com-
bination of variables, such as patient characteristics (eg, 
race, sex, age, and genetics), disease characteristics (eg, 
anatomic involvement, disease severity, and tumor gene 
mutation), and other factors (eg, family history, environ-
mental exposure, and behavioral factors). These factors 
have an impact on individual patient care, such as the 
choice of treatment. Integration of all these factors can 
be achieved through clinical prediction models, which are 
designed to estimate a diagnostic or prognostic outcome 
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for an  individual patient. In this section, we discuss gen-
eral concepts regarding the development of clinical pre-
diction models. Suggested further reading on this topic 
includes textbooks by Steyrberg1 and Harrell.6 

The development of a clinical prediction model 
involves 3 components: building, validation, and pre-
sentation. Both building and validation are guided by 
model prediction performance evaluations. Building a 
prediction model can be viewed as a process of conduct-
ing association analyses on many factors simultaneously 
within a systematic framework. This process starts with 
the selection of candidate predictors based on clinical 
relevance, statistical strength, and practical usefulness. 
This selection should consider: (1) newly discovered 
factors or markers with strong preliminary data suggest-
ing an impact on disease prognosis and (2) previously 
established risk factors or prognostic markers that could 
be confounders or effect modifiers. When data on many 
factors are needed, missing or insufficient data likely will 
exist. Careful data inspection and coding of the potential 
predictors is important. To increase the model’s predictive 
power, an optimal functional form (eg, linear, quadratic) 
for each given predictor is determined while separately 
assessing the association between the individual factor 
and outcome. 

The next step, model specification and estimation, is 
the most critical. In this step, the question of which vari-
ables are of greatest importance to predict the outcome 
is examined through multivariable regression modeling 
procedures, which are often automatic algorithms such as 
stepwise selection. Another aspect of model specification 
is testing for interactions; ie, that the effect of one predic-
tor depends on the value of another predictor. 

During the model-build process, exploratory search-
ing associated with data-driven procedures is always 
involved. This increases the chance of false discoveries. 
Therefore, validation of the findings is a critical step for 
achieving clinical and practical utility. Internal validity 
refers to reproducibility of the model; this is often studied 
by assessing the validity of a data set that came from the 
same source as the development data. Cross-validation7 
is one of the common methods. More critical is external 
validity, which should be assessed on a different, inde-
pendent data set from a plausibly related population. 
Nomograms or web calculators are commonly used pre-
sentations for a prediction model.

Depending on the ultimate usage of the prediction 
model, different aspects associated with specific perfor-
mance measures can be assessed. For example, the coeffi-
cient of determination, R2, is a useful overall performance 
measure. It can be interpreted as the amount of variability 
seen in an outcome that can be explained by the predic-
tors included in the model. For example, in oncology an 

important application of a prediction model is to classify 
patients into high-risk vs low-risk groups. In this case, the 
concordance statistic, which is a measure of the predic-
tive accuracy of the model, is the primary requirement for 
model performance assessment. 

Clinical Trials

Design of Clinical Trials
Observational studies are useful for advancing our knowl-
edge of disease risk and prognosis, but treatment develop-
ment requires rigorously designed experiments to test the 
safety and efficacy of a proposed regimen. This is achieved 
using clinical trials. Unlike observational studies, clinical 
trials contain a variable of interest (typically a treatment) 
that is manipulated by the investigators using a prespeci-
fied trial design. To ensure consistent trial conduct across 
sites and patients, the study protocol is rigorously defined 
for application of treatment, ascertainment of outcomes, 
safety monitoring, decision rules, analysis plans, and 
specimen collection.8 Analysis of clinical trials is often 
simplified because these have a focused primary hypoth-
esis, optimal sample size and power determinations, a 
properly defined data collection process, and the ability to 
control for confounders and reduce bias and variability. 
By using simple statistical analysis methods with fewer 
assumptions, clinical trials can deliver stronger and more 
convincing evidence than observational studies.8 

Clinical trials generally are classified as phase 1, 2, 
or 3 according to their primary aims and stage in the 
timeline of drug development. Phase 1 trials are used to 
determine an optimal dose level and/or treatment sched-
ules, which is required before a regimen can be tested 
for efficacy. In order to determine dosage, researchers 
often identify a maximum tolerated dose (MTD) that 
produces the maximal treatment benefit while protect-
ing patients from severe toxicities. These severe toxicities, 
called dose-limiting toxicities (DLTs), are study-specific 
and prespecified. In general, DLTs are defined as seri-
ous or fatal side effects of the regimen being tested, and 
commonly are measured during the first cycle of the 
treatment. A traditional and commonly used phase 1 
design for determining the appropriate dosage in oncol-
ogy is the “3+3” design. Three patients per cohort are 
treated per dose level, and the dose decreases or increases 
in subsequent cohorts based on the number of DLTs. 
This design is more appropriate for cytotoxic agents than 
for biologic agents. The fundamental assumption in this 
design is that both treatment benefit and toxicity mono-
tonically increase as the dose increases; however, many 
targeted compounds and novel therapies with cytostatic 
mechanisms of action do not share the same dose-
response assumption of cytotoxic agents. In the modern 
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era of therapeutic development in cancer treatment, 
dose-finding strategies of more than 1 dimension are 
needed for testing combinations of  compounds. In addi-
tion, innovative designs that also account for efficacy data 
in dose finding may be more appropriate in many cases 
than the traditional 3+3 design. Braun’s recent review on 
phase 1 clinical trials provides an excellent overview of 
the methodological advances in this area.9 

Before moving into large confirmatory studies, new 
treatments or regimens are quickly screened based on 
early evidence of efficacy in phase 2 trials. These studies 
usually have small sample sizes and target large treat-
ment effects. In the past, single-arm designs were com-
monly used, in which the effect of the new regimen is 
compared with historical data. As oncology research has 
advanced, the randomized phase 2 design that includes 
a concurrently randomized control patient group has 
become a more frequent choice. Starting in phase 2 tri-
als, controlling type I and type II error rates becomes 
critical. If investigators incorrectly conclude that there is 
a treatment effect when none exists, the result is a “false-
positive,” or type I error. If treatment effects exist, but 
investigators fail to detect them, this result is a “false-
negative,” or type II error. When designing a trial, a 
balance between acceptable levels of type I and type II 
error must be considered. This involves an assessment 
of the risk levels that investigators are willing to accept 
for false-positive and false-negative findings. Typically, 
in phase 2 trials the type I and type II error rates are 
prespecified to be within a range of 10% to 20%.

For ethical reasons, it is desirable to minimize the 
number of patients treated with ineffective or inferior 
treatments; therefore many trials use interim analyses to 
determine if they can be stopped before their scheduled 
completion. From a statistical perspective, there are 2 
reasons to stop a trial early: superiority (ie, efficacy) and 
inferiority (ie, futility). The first situation applies when 
there is overwhelming evidence that the experimental 
treatment is superior to control. In the second situation, 
trials are stopped when it is highly unlikely that a trial will 
achieve the target treatment effect, even if all the patients 
are enrolled. For single-arm phase 2 studies, the Flem-
ing’s 2-stage design10 provides the ability to stop the trial 
early (after approximately half of the patients are accrued) 
if the results are either overwhelmingly positive or nega-
tive. Owing to the small sample size of phase 2 trials, a 
substantially large treatment effect—usually beyond what 
is realistic—generally will be required to meet the early 
stopping criteria for efficacy. However, this design raised 
concerns about unreliable estimates of the treatment 
effect. Simon’s 2-stage design (optimal or minimax)11 
restricts the interim analysis to only evaluate futility, and 
has become the standard single-arm phase 2 design.

To provide definitive evidence to move a new regi-
men or modality into patient care, large confirmatory 
studies are needed. These phase 3 randomized controlled 
trials (RCTs) are designed to be comparative between 
 concurrent arms. Some fundamental principles of RCTs 
are randomization, stratification, and blinding. Random-
ization of patients into treatment groups is a critical tool to 
prevent biases that could occur if treatment selection were 
based on patients’ prognostic factors or other confound-
ing factors.12,13 Stratification is an effective and practical 
procedure to ensure the success of the randomization by 
assigning patients with certain characteristics equally to 
each treatment group (eg, assigning equal numbers of 
males and females to each group).14 Blinding is a pro-
cedure that withholds information from specific groups 
of individuals (patients and/or healthcare providers) to 
reduce the response bias associated with the psychological 
impact of being treated with an intervention perceived as 
superior to a control treatment.15 Blinding is particularly 
important when the endpoint measurement is subjective 
or semisubjective. 

More advanced designs, such as outcome-adaptive 
designs, are increasingly used in modern oncology tri-
als. Trials with adaptive designs formally and statistically 
incorporate ongoing modification during the course of the 
trial based on accumulating outcome data.16 For example, 
a design can gradually assign newly enrolled patients to 
treatment arms that demonstrate better treatment effects 
based on these continuous evaluations. If there are mul-
tiple subpopulations defined by biomarkers that can 
potentially react differently to the treatment, adaptive 
design can be used to isolate the responder population.17 
The I-SPY2 (Investigation of Serial Studies to Predict 
Your Therapeutic Response With Imaging and Molecu-
lar Analysis 2) trial is an example of a study with such 
an adaptive design.18 This ongoing phase 2 confirmatory 
trial screens pairs of compounds and biomarkers based 
on the predictive probability of each regimen being suc-
cessful. For example, 1 analysis showed that veliparib and 
carboplatin along with standard chemotherapy improves 
outcome in women with triple-negative breast cancer.19

Analyses of Clinical Trials
Many references provide technical details on the analysis 
of clinical trials.20-22 One common problem in clinical tri-
als is analyzing data from patients who do not adhere to 
protocol treatment or who have nonprotocol treatment 
crossovers. Incorporating these imperfections in trial 
conduct into the resulting data potentially can impact the 
study findings and interpretation of results. One intuitive 
approach is to analyze patients according to the treatment 
they actually received, regardless of the original treatment 
group. This approach has been shown to be potentially 
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misleading (especially when the intention is to show 
difference between treatments), because there might be 
confounders associated with patient adherence to the 
treatment, such as other treatments, disease status, or 
 lifestyle.23 To minimize this bias, intention-to-treat analy-
sis is used. This method reduces confounders by analyzing 
patients according to their original randomization assign-
ment, regardless the treatment they actually received.

Conclusions

This article provided a high-level review of statistical 
design and analysis for both observational studies and 
clinical trials. For observational studies, factors to con-
sider when selecting a statistical method include the 
questions to be addressed, the study design, and the types 
of variables to be analyzed. For clinical trials, the differ-
ent phases of studies and the principles of RCTs were 
discussed. As is true of any research, fighting cancer is a 
process of continually updating knowledge about the dis-
ease using both biological and statistical points of view to 
allow evidence-based decisions for better outcomes. The 
sound integration of biology and statistics provides fertile 
ground for continual innovation in oncology research.
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