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Abstract: Targeted and immune-based therapies have improved 

outcomes in advanced kidney cancer, yet novel strategies are needed 

to extend the duration of these benefits and expand them to more 

patients. Combined inhibition of vascular endothelial growth factor 

(VEGF) and the programmed death 1 (PD-1)/programmed death 

ligand 1 (PD-L1) pathways with therapeutic agents already in clinical 

use may offer such a strategy. Here, we describe the development and 

clinical evaluation of VEGF inhibitors and, separately, PD-1/PD-L1 

inhibitors. We present preclinical evidence of interaction between 

these pathways and the rationale for combined blockade. Beyond 

well-known effects on pathologic angiogenesis, VEGF blockade also 

may decrease immune tolerance and enhance PD-1/PD-L1 block-

ade. We conclude with the results of several early trials of combined 

VEGF and PD-1/PD-L1 blockade, which demonstrate encouraging 

antitumor activity, and we pose questions for future study.

Introduction

The American Cancer Society estimates that cancers of the kidney 
or renal pelvis will be diagnosed in 63,990 Americans in 2017, and 
that 14,400 will die of their disease.1 According to 2006-2012 data, 
the 5-year survival for those with distant spread of disease—who 
account for 16% of cases—was 11.7%.2 Historically, kidney cancer 
therapy has been notable for the failure of cytotoxic chemotherapy 
but also for the promise of immune-based therapies such as interleu-
kin 2 (IL-2) and interferon alfa (IFN-α). The recent development 
of targeted therapies—inhibitors of vascular endothelial growth 
factor (VEGF) and mammalian target of rapamycin (mTOR)—and 
immune-based therapies has transformed the treatment of kidney 
cancer, improving response rates and survival beyond what was 
previously possible. Still, many novel therapies provide benefit to 
only a portion of treated patients, and for a limited time. Therefore, 
there is an ongoing need for improved approaches to the treatment 
of advanced kidney cancer. Here, we describe the role of pathologic 
angiogenesis and immune tolerance in kidney cancer. We discuss 
agents that target angiogenic signaling mechanisms and immune 
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checkpoints, as well as mechanisms of tumor resistance. 
Finally, we focus on evaluating the rationale for—and 
the outcomes achieved with—combinations of agents 
for antiangiogenesis and agents for immune checkpoint 
blockade. 

Angiogenesis, Antiangiogenesis,  
and Resistance

VEGF, which is controlled by hypoxia-inducible factor 
(HIF),3 binds to endothelial receptors. This results in 
mitogenic, angiogenic, and pro-permeability signaling, as 
has been reviewed extensively elsewhere.4 Also reviewed 
elsewhere5 is the action of tyrosine kinase inhibitors 
(TKIs), which target VEGF receptors and other receptors. 
Lenvatinib (Lenvima, Eisai) inhibits fibroblast growth 
factor (FGF) receptor and cabozantinib (Cabometyx, 
Exelixis) inhibits c-MET, both of which are potential 
mechanisms of VEGF resistance, discussed below. Large 
randomized clinical trials have led to US Food and Drug 
Administration (FDA) approval of sunitinib (Sutent, 
Pfizer)6 and pazopanib (Votrient, Novartis)7 as first-line 
therapies. Sorafenib (Nexavar, Bayer),8 axitinib (Inlyta, 
Pfizer),9 cabozantinib,10 and lenvatinib (Lenvima, Eisai) 
in combination with everolimus (Afinitor, Novartis)11 
have been evaluated and approved as later-line therapies. 
Another strategy for targeting VEGF signaling is the use 
of monoclonal antibodies, especially bevacizumab (Avas-
tin, Genentech), which is active as a single agent12 and is 
FDA-approved in combination with IFN.13,14 

Most patients who receive first-line VEGF-targeting 
agents exhibit disease stability or a partial response (10% 
to 20% may have primary refractory disease).15 In addi-
tion, resistance to treatment will develop in most patients 
after a median of 6 to 11 months.6-8,13,14 Interestingly, 
patients may still respond to other VEGF-directed TKIs16 
and antibodies17 after failure of first-line VEGF therapy. 
Nonetheless, responses and survival are limited after resis-
tance develops.

Activation of alternative angiogenic pathways may 
promote resistance. The receptor tyrosine kinase c-MET 
has been implicated in pathogenic angiogenesis18 and is 
upregulated in response to sunitinib.19 Cabozantinib has 
been shown to overcome sunitinib resistance in mice.20 
In trials, cabozantinib improved overall survival (OS) as 
second-line therapy compared with everolimus,10 and 
it improved progression-free survival (PFS) as first-line 
therapy compared with sunitinib.21 Similarly, FGF is 
a proangiogenic factor under the control of HIF, and 
its expression increases after VEGF inhibition.19 It is 
frequently and strongly expressed in kidney cancer.22 
In vitro, FGF blockade has demonstrated reversal of 
pathogenic angiogenesis22 and has overcome VEGF 

resistance.23 Lenvatinib improved PFS as second-line 
therapy.11 In contrast, the experimental agent dovitinib 
(a combined VEGF/FGF inhibitor) was not superior to 
sorafenib as third-line therapy.24 Thus, c-MET and FGF 
are potentially targetable mechanisms of resistance to 
anti-VEGF therapy; 2 approved therapies employ this 
strategy.

The interaction between the tumor and its micro-
environment is another important source of resistance.25 
Stromal cells (especially endothelial cells) may activate 
alternate proangiogenic pathways such as angiopoietin 2 
and ALK1, both of which have been targeted in kidney 
cancer clinical trials.26,27 Inflamed, hypoxic tissues may 
generate excess extracellular adenosine—also generated 
by regulatory T-cell (Treg) CD39 and CD73 ectoen-
zymes—which binds the A2A adenosine receptor on 
T cells, inhibiting antitumor response.28 Finally, infil-
trating immunosuppressive cells promote resistance, as 
discussed below.

The Programmed Death 1 Pathway 
in Kidney Cancer

The programmed death 1 (PD-1)/programmed death 
ligand 1 (PD-L1) pathway has been a critical target of 
cancer treatments. The physiologic role of this pathway 
is to terminate immune response after T-cell activa-
tion.29 Binding of PD-L1/PD-L2 to PD-1 inhibits the 
activation of T-cell receptor proximal kinases, changing 
the balance in activation and inhibition of downstream 
signaling pathways and altering cell cycle progression, 
gene transcription, metabolism, and epigenetic programs 
in T cells.29 PD-L1 is normally expressed by macrophage 
lineage cells and is inducible on activated T cells; tumors 
may acquire the ability to express PD-L1 aberrantly.29 
PD-L1 is expressed in both primary and metastatic renal 
cell carcinoma (mRCC), induced by the infiltrating 
immune cell production of interferons.30 Its expression 
by kidney cancers or tumor-infiltrating mononuclear cells 
correlates with aggressive pathologic features, increased 
risk for disease progression, cancer-specific death, and 
overall mortality.31-34 Shed PD-L1 is detectable in serum 
before nephrectomy and correlates with aggressive patho-
logic features and mortality.35 

These data provoked considerable interest in using 
PD-1 as a therapeutic target. The development of PD-1/
PD-L1 inhibitors has been extensively reviewed.36 
Nivolumab (Opdivo, Bristol-Myers Squibb) showed effi-
cacy and a favorable toxicity profile in previously treated 
patients with kidney cancer enrolled in phase 1 trials,37,38 
achieving durable responses that sometimes persisted 
after drug discontinuation.39 Phase 2 data were equally 
encouraging,40 culminating in the randomized phase 3 
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CheckMate 025 trial (Study of Nivolumab vs Everolimus 
in Pre-Treated Advanced or Metastatic Clear-Cell Renal 
Cell Carcinoma) comparing nivolumab with everolimus 
following failure of antiangiogenic therapy. Nivolumab 
was associated with improved OS and fewer serious 
adverse events (AEs),41 leading to FDA approval in 
2015. Finally, PD-L1–blocking antibodies are also under 
investigation in kidney cancer. Atezolizumab (Tecentriq, 
Genentech) has demonstrated activity in both clear cell 
renal cell carcinoma (ccRCC) and non-ccRCC,42 dis-
cussed below. 

The Rationale for Combined VEGF  
and PD-1 Inhibition

Aside from directly promoting tumor growth, dysreg-
ulated angiogenic signaling may also promote escape 
from immune surveillance. Multiple mechanisms may 
allow pathologic angiogenesis to mute the immune 
response to kidney cancer and to immune-directed ther-
apies (Figure).

Mechanisms of Immune Tolerance
Failure of Immune Infiltration. Antitumor response 
depends on T-effector cells (Teffs; CD8+ and CD4+Foxp3–) 
localizing to and infiltrating tumors. Tumor endothelium 
may prevent this process through VEGF- and endothe-
lin-mediated regulation of vascular permeability. The 
endothelin axis contributes to pathologic angiogenesis 
and tumor progression,43 stimulating the production of 
VEGF via HIF-1α44 and inhibiting lymphocyte infil-
tration, which is dependent on intercellular adhesion 
molecule 1 (ICAM-1).45 FGF decreases endothelial 
expression of ICAM-1 and prevents tumor necrosis factor 
α (TNF-α) from promoting endothelial adhesion mol-
ecule expression.46 VEGF induces tumor endothelium 
to express the death mediator Fas ligand (FasL), with a 
resulting decrease in CD8+ T-cell infiltration and pre-
dominance of immunosuppressive Tregs (CD4+Foxp3+). 
Importantly, inhibition of VEGF and prostaglandin E2 
(PGE2) in mice markedly increased tumor-infiltrating 
CD8+ T cells relative to Tregs and suppressed tumor 
growth.47 Thus, multiple proangiogenic signaling 

Figure. Shifting the balance toward antitumor response with combined VEGF/PD-1 blockade. APC, antigen-presenting cell; DC, 
dendritic cell; IFN-γ, interferon gamma; mAb, monoclonal antibody; MDSCs, myeloid-derived suppressor cells; MHC-I, major 
histocompatibility complex class I; PD-1, programmed death 1; PD-L1, programmed death ligand 1; Treg, regulatory T cell; TKI, 
tyrosine kinase inhibitor; VEGF/R, vascular endothelial growth factor receptor.
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pathways may decrease tumor vascularity, permeability, 
and lymphocyte transmigration.

Immunosuppressive Immune Cells. The kidney can-
cer microenvironment often demonstrates a prominent 
immune cell infiltrate containing multiple cell types.48 
Many of these can induce immune tolerance and are 
influenced by angiogenic factors.49 

Some lymphoid cells promote tolerance. Tregs inhibit 
the function of Teffs50 and, in tumors, negatively correlate 
with survival.51 Tumors recruit Tregs via the chemokine 
CCL22, induced by hypoxia.51,52 PD-L1 expression reg-
ulates the development of induced Tregs and maintains 
their suppressive function via Foxp3 expression.53 In addi-
tion, a subset of tumor-associated dendritic cells (DCs, 
discussed below) can promote the proliferation of Tregs.54 
Although promising in preclinical models, therapeutic 
Treg depletion with anti-CD25 toxin conjugates55,56 failed 
to enhance immune therapies consistently, possibly owing 
to limited Teff infiltration.57

Other immunosuppressive cells are myeloid, such 
as DCs, myeloid-derived suppressor cells (MDSCs), and 
tumor-associated macrophages (TAMs). DCs are central 
regulators of immune responses and can induce immunity 
or tolerance depending on their differentiation.48 As the 
most potent antigen-presenting cells (APCs), DCs pres-
ent tumor antigens to lymphocytes.58 Normal myeloid 
DCs can produce IL-12 and induce the production of 
IFN-γ and IL-10, all strong antiangiogenic signals.59 
Thus, myeloid DCs can suppress tumor angiogenesis.51 In 
contrast, some DCs are recruited by β-defensins (antimi-
crobial inflammatory peptides) to tumors, where, induced 
by VEGF, they undergo endothelial-like differentiation 
and can independently assemble neovasculature.60 Thus, 
depending on the milieu, DCs can play both positive 
and negative roles in both angiogenesis and antitumor 
immune response.

MDSCs (Gr+CD11b+) are a heterogeneous popula-
tion of immunosuppressive cells identified in tumors61 
that are correlated with refractoriness to antiangiogenic 
therapy.62 They increase tumor angiogenesis via the pro-
duction of matrix metallopeptidase 9 (MMP9), which 
releases VEGF from extracellular matrix63; this is abro-
gated by VEGF or MMP inhibition. In mice with tumors 
refractory to VEGF-directed therapy, the effectiveness 
of this therapy is increased when it is combined with a 
monoclonal antibody against myeloid cells.62 

Tumors attract monocytes and, under hypoxic condi-
tions, promote differentiation into the TAM phenotype, 
specifically the M2 phenotype that overexpresses VEGF 
and inhibits the T-helper cell type 1 (Th1) response 
(responsible for clearance of intracellular pathogens).51,64,65 
These studies suggest an integral role for lymphoid and 

myeloid cells in the promotion of tolerance, as well as a 
dependence on angiogenic signaling for this effect.

Functional Impairment of Immune Cells. The kidney 
cancer immune infiltrate is often polarized toward a 
Th1-type response.66 In addition, the hypoxic tumor 
microenvironment may result in HIF-1α–mediated 
increased expression of major histocompatibility com-
plex class I (MHC-I), resulting in an increased ability 
for antigens to be presented to effector lymphocytes.67 
So why should immune tolerance emerge? Teffs in the 
tumor microenvironment appear anergic owing to 
multiple alterations, including deficits in T-cell receptor 
signaling molecules.48 Secondly, hypoxia, inactivation of 
the von Hippel-Lindau gene (VHL), and overexpression 
of carbonic anhydrases create an acidic tumor microen-
vironment rich in lactate,68 which impairs lytic granule 
exocytosis.69 Reversal of acidosis relieves inhibition. 
Thus, even Teffs that have infiltrated tumors may be 
functionally impaired.

Similar mechanisms could promote tolerance after 
PD-1/PD-L1 blockade, although little is known about 
mechanisms of resistance in kidney cancer. In a small 
study in patients with melanoma resistant to PD-1 block-
ade, tumor whole-exome sequencing revealed defects in 
pathways involved in IFN receptor signaling and antigen 
presentation.70 Further research into the mechanisms of 
acquired resistance to PD-1/PD-L1 blockade in kidney 
cancer will be needed.

Immunologic Effects of VEGF and VEGF Blockade
VEGF overexpression results in abnormal hematopoiesis 
and the blockade of myeloid cell differentiation into DCs 
in mice71-74 and in patients with cancer.75,76 Bevacizumab 
was associated with both reduction in peripheral immature 
myeloid cells and enhancement of the antigen-presenting 
function of DCs.76 Similarly, axitinib treatment in a mouse 
melanoma model induced differentiation of monocytic 
MDSCs toward an APC phenotype. In addition, sunitinib 
therapy depleted peripheral MDSCs in patients with kid-
ney cancer, also linked to reversal of peripheral Treg eleva-
tion and Teff suppression.77 Of note, the effects of VEGF 
on DC development and function may be independent 
of tyrosine kinase signaling,58 suggesting an alternative 
pathway uninhibited by TKIs.

In mice, VEGF directly induces Treg proliferation. 
Conversely, in mice and humans, anti-VEGF TKIs and 
antibodies decreased Tregs in spleens, tumor-draining 
lymph nodes, and peripheral blood but did not affect 
their ability to suppress T-cell proliferation and IFN-γ 
secretion.78 After recruitment to a hypoxic region, Tregs 
can also promote angiogenesis and VEGF expression.52 
Thus, there is a reciprocal relationship between VEGF 
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and Tregs. Sunitinib decreased Tregs in tumor-bearing 
mice79 and decreased peripheral and tumor Tregs in 
patients with kidney cancer.80 Reduction in Tregs after 
2 to 3 cycles of treatment correlated with improved OS, 
although the decrease did not correlate with radiographic 
tumor volume, suggesting that benefits may be indepen-
dent of radiographic response. Similar results were seen 
with sorafenib and a reduction in tumor-infiltrating 
Tregs.81 Sunitinib increased tumor infiltration by Teffs 
in mice.79 Anti-VEGF TKIs have been associated with 
reductions in Foxp3 expression, a maintainer of Tregs, 
and decreased tumor PD-L1 expression in mice79 and in 
patients with kidney cancer undergoing nephrectomy.19 
Similarly, incubation of monocytic DCs with ovarian 
tumor cells increased DC PD-1 expression, inhibited by 
VEGF blockade.82

In one study, patients with kidney cancer received 
bevacizumab followed by the combination of bevaci-
zumab plus atezolizumab, with serial evaluations to assess 
the effect of both phases.83 After bevacizumab, the tumor 
immune microenvironment demonstrated increased 
chemokine signatures related to Th1-type response, 
increased tumor MHC-I expression, and infiltration of 
tumor-specific T-cell clones. After the combination of 
atezolizumab and bevacizumab, further increased traffick-
ing and tumor infiltration by CD8+ T cells and increased 
unique T-cell clones in tumors were observed. Chemo-
kines increased, most notably fractalkine, expressed on 
activated endothelium in response to inflammation or 
hypoxia. Thus, antiangiogenic therapy alone had immu-
nologic effects that were increased when it was combined 
with PD-L1 inhibition.

Sequencing and Combining Therapies

VEGF-Directed Therapy After Checkpoint Inhibition
Are VEGF-targeted therapies less effective after prior 
failure of checkpoint inhibition? In patients with kidney 
cancer who had progressive disease after PD-1/PD-L1 
blockade, second-line VEGF-directed therapy was as effec-
tive as expected after failure of first-line VEGF-directed 
therapy.84 In addition, prior PD-1 blockade did not affect 
the safety of subsequent anti-VEGF TKIs.85 However, 
decreased response rate and PFS were associated with 
a second-line anti-VEGF TKI after prior combination 
PD-1/VEGF-directed therapy vs PD-1 therapy alone. This 
analysis also demonstrated that a longer interval between 
the end of PD-1 therapy and the start of anti-VEGF TKI 
therapy decreased overall response to the TKI regardless of 
prior therapy, suggesting some possible overlapping activ-
ity between residual PD-1 and VEGF inhibition, although 
this conclusion is limited by retrospective analysis and 
possible confounders.

Clinical Trials of Combined VEGF/PD-1 Inhibition
Combined TKI and Checkpoint Inhibitor Trials. PD-1 
inhibition has been combined with VEGF-directed TKIs 
in several ongoing trials; dosing and toxicity details appear 
in the table. Amin and colleagues described a phase 1 trial 
(NCT01472081), first presented at the 2014 American 
Society of Clinical Oncology (ASCO) annual meeting, of 
nivolumab plus either sunitinib or pazopanib in patients 
with previously-treated mRCC.86 Following nivolumab 
dose escalation and on the basis of tolerability, the 5-mg/
kg cohort was expanded to include treatment-naive 
patients; the pazopanib-containing arm was closed owing 
to 4 dose-limiting toxicities (primarily elevated trans-
aminases), an effect also observed in a pembrolizumab 
combination trial discussed below. The overall response 
rate (ORR) was approximately 50%, with stable disease in 
another third of patients—substantially higher rates than 
those seen with any agent individually, especially given 
the prior treatment.

Pembrolizumab has also been evaluated, primarily 
in combinations. Preliminary results from a phase 1/2 
study of pembrolizumab plus pazopanib in patients with 
treatment-naive, advanced, predominantly ccRCC were 
presented at the 2015 European Society for Medical 
Oncology (ESMO) annual meeting (NCT02014636).87 
The pembrolizumab dose was escalated in combination 
with pazopanib. After a safety review, the starting dose 
of pazopanib was reduced because of hepatotoxicity. The 
ORR was 60% in the pazopanib 800-mg group (with 
1 complete response) and 20% in the 600-mg group. 
Given the significant hepatotoxicity associated with 
pazopanib, sequential dosing schemes were explored. 
This trial, like the nivolumab-plus-pazopanib trial dis-
cussed earlier, shows that not every combination strategy 
will prove safe and that PD-1 blockade following certain 
VEGF-targeting agents may also increase toxicity.

At the 2016 ESMO meeting, Atkins and colleagues 
presented preliminary results from a phase 1b study of 
pembrolizumab plus axitinib in treatment-naive patients 
with advanced RCC (NCT02133742).88 The ORR was 
71.2%, with another 19.2% exhibiting stable disease. 
Biomarker results were reported, and PD-L1 status did 
not seem to predict response.

Will the blockade of additional proangiogenic path-
ways improve results? At the same ESMO meeting, Apolo 
and colleagues presented preliminary results from a phase 
1 study of nivolumab plus cabozantinib, the inhibitor of 
VEGF and c-MET (NCT02496208).89 The ORR was 
33%, including a partial response in the 1 patient with 
RCC, and the percentage of patients with stable disease 
was 38%. The lack of immune-related AEs was promising 
for future study of this combination, with attention to the 
unique occurrence of neutropenia. 
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Another question is whether PD-L1 vs PD-1 block-
ade will alter results of this combination strategy. At 
the 2016 ASCO annual meeting, Larkin and colleagues 
presented the plan for a phase 1b study of avelumab plus 
axitinib in treatment-naive patients with advanced RCC 
(NCT02493751).90 Enrollment had begun in 2015; 

preliminary results were not yet available. A phase 3 trial 
of avelumab plus axitinib vs sunitinib for the first-line 
therapy of patients with advanced RCC is planned.

Combined Monoclonal Antibody and Checkpoint 
Inhibitor Trials. Bevacizumab is also being studied in 

Table.  Clinical Trials of Combined VEGF-Directed Therapy and PD-1/PD-L1 Inhibition

Combinations/
Trials Phase Population N Treatment Armsa ORR Notable AEs

PD-1 + TKI

NCT0147208186 1 Treated 
mRCC

33 nivo (2-5 mg/kg) + 
sun (50 mg 4 wk on, 
2 wk off) vs nivo + paz 
(800 mg)

52% (nivo + sun) 
and 45% (nivo + 
paz); SD in 33% 
(nivo + sun) and 
35% (nivo + paz)

nivo 2-mg/kg + paz 
group closed owing 
to 4 DLTs (⇑LFTs, 
fatigue); grade 3-4 
related AEs in 60%-
73%

NCT0201463687 1/2 Treat-
ment-naive 
aRCC (pre-
dominantly 
ccRCC)

20 pembro (2-10 mg/kg 
q2wk) + paz (800 or 
600 mg)

60% (paz 800-mg 
group), 20% (paz 
600-mg group)

Significant hepatotox-
icity with paz 800 mg

NCT0213374288 1b Treat-
ment-naive 
aRCC

52 pembro (2 mg/kg q3wk) 
+axi (3-5 mg BID)

71.2%, SD in 
19.2%

Grade 3+ AEs in 
65.4%

NCT0249620889 1 Multiple 
tumor types

24 (1 RCC); 
expansion 
in RCC 
planned

Part 1: nivo (1-3 mg/kg) 
+ cab (40-60 mg)  
Part 2: nivo + cab + ipi 
× 4

33%, 1 PR in 
RCC patient, SD 
in 38%

Grade 3 neutropenia 
seen, no irAEs

PD-L1 + TKI

NCT0249375190 1b Treat-
ment-naive 
aRCC (with 
cc compo-
nent)

Enrolling avel (5-10 mg/kg q2wk) 
+ axi (3-5 mg BID)

N/A N/A

PD-L1 + mAb

NCT0163397091,92 1b Treat-
ment-naive 
aRCC (with 
cc compo-
nent)

12 atezo (20 mg/kg q3wk) 
+ bev (15 mg/kg q3wk)

40% No grade 3-4 AEs 
related to atezo, 3 
cases of significant 
hypertension

NCT0198424293 2 Treat-
ment-naive 
mRCC (cc 
or sarcoma-
toid)

305 atezo (1200 mg q3wk) + 
bev (15 mg/kg q3wk) vs 
atezo (1200 mg q3wk) 
vs sun (50 mg 4 wk on, 
2 wk off)

32% overall in 
atezo + bev arm; 
in PD-L1+ pts, 
46% (atezo + bev) 
vs 27% (sun) and 
28% (atezo)

Grade 3-4 AEs in 40% 
of atezo + bev arm vs 
57% (sun) and 17% 
(atezo)

NCT0242082194 3 Treat-
ment-naive 
mRCC

Planned atezo (1200 mg q3wk) 
+ bev 15 mg/kg q3wk vs 
sun (50 mg 4 wk on, 2 
wk off)

N/A N/A

(Table continues on next page)
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Combinations/
Trials Phase Population N Treatment Arms* ORR Notable AEs

PD-1 + mAb

NCT0221011795 1 Treated 
mRCC 
pre-nephrec-
tomy

Enrolling nivo (3 mg/kg q2wk 
× 3) vs nivo (3 mg/
kg q2wk × 3) + bev 
(10 mg/kg q2wk × 3) vs 
nivo (3 mg/kg q3wk × 
2) + ipi (1 mg/kg q3wk 
× 2)

N/A N/A

NCT0234800896 1b/2 Treated 
mRCC 
(ccRCC)

Enrolling pembro (200 mg q3wk) 
+ bev (10-15 mg q3wk)

N/A N/A

NCT0229895997 1 Treated 
mRCC 
(post-TKI)

Enrolling pembro + ziv-aflibercept N/A N/A

AE, adverse event; aRCC, advanced renal cell carcinoma; atezo, atezolizumab (intravenous); avel, avelumab (intravenous); axi, axitinib (oral);  
bev, bevacizumab (intravenous); BID, twice a day; cab, cabozantinib (oral); cc, clear cell; DLT, dose-limiting toxicity; ipi, ipilimumab (intravenous);  
irAE, immune-related adverse event; ⇑LFT, increased liver function test; mAb, monoclonal antibody; mRCC, metastatic renal cell carcinoma;  
N, number of patients; nivo, nivolumab; N/A, not available; ORR, overall response rate; paz, pazopanib (oral); PD-1, programmed death 1;  
PD-L1, programmed death ligand 1; pembro, pembrolizumab (intravenous); PR, partial response; pt, patient; q, every; RCC, renal cell carcinoma;  
SD, stable disease; sun, sunitinib; TKI, tyrosine kinase inhibitor; wk, week(s).
a Oral medication doses are daily unless otherwise indicated.

Table.  (Continued)  Clinical Trials of Combined VEGF-Directed Therapy and PD-1/PD-L1 Inhibition

combination with PD-1/PD-L1 inhibitors. A phase 
1b study is evaluating atezolizumab plus bevacizumab 
in treatment-naive advanced RCC with a clear cell 
component (or with chemotherapy for other cancers; 
NCT01633970).91 At the 2015 ASCO Genitourinary 
Cancers Symposium, Sznol and colleagues presented pre-
liminary results from this trial.92 Among 10 patients with 
at least 1 tumor assessment, the ORR was 40%. Increases 
in tumor-infiltrating CD8+ T cells were observed.83 

This result led to the phase 2 IMmotion150 trial (A 
Phase 2 Study of Atezolizumab as Monotherapy or in 
Combination With Bevacizumab Compared to Sunitinib 
in Participants With Untreated Advanced Renal Cell Car-
cinoma; NCT01984242), the first randomized study of 
combined PD-1/PD-L1 and VEGF inhibition in kidney 
cancer. Patients with treatment-naive RCC (either clear 
cell or with sarcomatoid components) were randomly 
assigned to atezolizumab with or without bevacizumab or 
to sunitinib. Patients were stratified by prior nephrectomy 
status, PD-L1 immunohistochemistry expression (<1% 
or ≥1% PD-L1 expression on the immune infiltrate, 
deemed “positive”), and Motzer criteria. Crossover from 
the atezolizumab monotherapy and sunitinib arms was 
allowed after disease progression (except in Europe, where 
crossover from atezolizumab monotherapy was prohib-

ited). Data were recently presented at the 2017 ASCO 
Genitourinary Cancers Symposium.93 Among all patients 
(intent-to-treat analysis), median PFS was longer with 
atezolizumab plus bevacizumab (11.7 months) than with 
atezolizumab monotherapy (6.1 months) or sunitinib (8.4 
months). Subgroup analysis revealed that increased levels 
of PD-L1 expression correlated with more favorable PFS 
hazard ratios with combination therapy, indicating that 
patient selection might be possible according to PD-L1 
expression. Of note, 56% of patients in the sunitinib arm 
and 43% of patients in the atezolizumab monotherapy 
arm crossed over to combined atezolizumab plus bevaci-
zumab, causing bias toward the null hypothesis, and the 
study was not powered to detect differences at an alpha of 
0.05 (only the comparison between investigator-assessed 
PFS in the combination arm and in the sunitinib arm 
reached significance). The ORR in the combination arm 
was 32% (intent-to-treat analysis), compared with 25% 
to 29% in the other arms. In the PD-L1–positive patients, 
the ORR was as high as 46% with combination therapy, 
and 12% to 15% of PD-L1–positive patients exposed to 
atezolizumab had complete responses. Analyses of clinical 
activity biomarkers and crossover treatment are ongoing. 

The comparison between combination atezolizumab 
plus bevacizumab vs sunitinib will be continued in the 
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phase 3 IMmotion151 trial (A Study of Atezolizumab 
in Combination With Bevacizumab Versus Sunitinib 
in Participants With Untreated Advanced Renal Cell 
Carcinoma) for treatment-naive patients with kidney 
cancer (NCT02420821).94 On the basis of the phase 
2 findings, the phase 3 trial analysis will focus on the 
PD-L1–positive population (although PD-L1 positivity 
is not required for enrollment). Thus, IMmotion150 
was the first randomized study of first-line PD-1/PD-L1 
blockade in kidney cancer, the first randomized study of 
combined VEGF/PD-1 inhibition, and the first study to 
compare PD-1/PD-L1 blockers directly with anti-VEGF 
TKIs. In addition to the intriguing finding of longer PFS 
with combination therapy, this study demonstrated that 
toxicity was reduced with PD-1/PD-L1 blockade vs TKI, 
and it showed that a complete response was possible in 
more than 10% of PD-L1–positive patients treated with 
first-line atezolizumab.

Trials in which PD-1 inhibitors are added to antian-
giogenic antibodies are also ongoing. One phase 1 study is 
investigating nivolumab vs nivolumab plus bevacizumab 
vs nivolumab plus ipilimumab—all treatments to be 
followed by nephrectomy—in patients with previously 
treated mRCC, excluding study drugs (NCT02210117).95 
A phase 1b/2 study is evaluating pembrolizumab plus 
bevacizumab in patients with previously-treated ccRCC 
(NCT02348008).96 A phase 1 study is looking at pem-
brolizumab plus the fusion anti-VEGF/R antibody 
ziv-aflibercept (Zaltrap, Sanofi/Regeneron) in multiple 
cancers; in RCC, patients must have previously received a 
VEGF-directed TKI (NCT02298959).97 

Combinations of Checkpoint Inhibitors. Meanwhile, 
additional combination strategies are being studied. 
For example, Hammers and colleagues presented 
preliminary data from CheckMate 016 (Nivolumab 
in Combination With Sunitinib, Pazopanib, or Ipili-
mumab in Subjects With Metastatic Renal Cell Carci-
noma; NCT01472081), a phase 1 study of nivolumab 
combined with the cytotoxic T-lymphocyte–associated 
antigen 4 (CTLA-4) checkpoint inhibitor ipilimumab 
in patients with ccRCC, mostly previously treated.98 
Toxicity was prevalent but occurred mainly with the 
highest doses of ipilimumab and nivolumab; grade 3 to 
4 occurrences were noted in only 34% of the patients in 
the dosing arm ultimately chosen for subsequent study. 
The ORR was approximately 40%, with another 40% 
of patients experiencing stable disease. CheckMate 214 
(Nivolumab Combined With Ipilimumab Versus Suni-
tinib in Previously Untreated Advanced or Metastatic 
Renal Cell Carcinoma; NCT02231749) is a phase 3 trial 
that will compare the combination of nivolumab plus 
ipilimumab vs sunitinib for treatment-naive patients.99

Biomarkers for Predicting Response. Correlative stud-
ies have attempted to identify biomarkers to facilitate 
patient selection. Despite the link between VHL gene 
mutation and VEGF signaling, neither VHL gene status 
nor HIF-1α/HIF-2α expression correlates with response 
to or PFS with pazopanib.100 

PD-L1 has been investigated as a biomarker for 
response to PD-1/PD-L1 blockade, with inconsistent 
results. In patients with kidney cancer, tumor overexpres-
sion of PD-L1 may be less prevalent than in patients with 
other tumor types. In CheckMate 025, 76% of patients 
had less than 1% tumor PD-L1 expression. Survival 
benefit with nivolumab vs everolimus was seen regardless 
of PD-L1 status.41 Evidence from other cancers has been 
mixed, with no prediction of response in squamous cell 
lung cancer101 or melanoma102 but some prediction of 
response in nonsquamous non–small cell lung cancer.103 
However, the level of PD-L1 expression on tumor-infil-
trating immune cells may be higher and may better indi-
cate response. In patients who had various cancers treated 
with atezolizumab, treatment response correlated better 
with immune cell PD-L1 expression than with tumor 
PD-L1 expression.104 In the previously discussed trial 
of atezolizumab plus bevacizumab, half of the patients 
had immune cell PD-L1 expression, and a trend toward 
increased antitumor activity was observed with higher 
levels of expression.93 

The power of PD-L1 expression to predict response 
to VEGF-directed therapy is limited. Tumor PD-L1 
expression was a negative prognostic factor in the 
COMPARZ study (Pazopanib Versus Sunitinib in the 
Treatment of Locally Advanced and/or Metastatic Renal 
Cell Carcinoma; NCT00720941),105 and this finding 
was corroborated in another series.106 In a third series, 
pre-nephrectomy serum levels of PD-L1 correlated 
with a worse response to anti-VEGF therapy.107 Some 
proposed that serum PD-L1 level might be useful as a 
predictive factor for VEGF-directed therapy. However, 
to establish predictive power, these results would have 
to be compared directly with outcomes in patients 
who had PD-L1 expression and received no VEGF- 
directed therapy.108 Without such data, there is no role 
for PD-L1 as a predictive factor for VEGF-directed 
therapy. VEGF might predict response to PD-L1 
blockade; plasma VEGF was decreased in patients 
who responded to atezolizumab but stable in patients 
with stable or progressive disease,109 but there was no 
comparison treatment arm. Thus, identifying predictive 
biomarkers has been difficult, but PD-L1 expression 
by tumor-infiltrating immune cells may help inves-
tigators select the patients most likely to benefit from 
PD-L1 blockade, with or without concurrent VEGF- 
directed therapy.
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Future Directions and Challenges

VEGF-targeted therapies and PD-1/PD-L1 inhibitors 
have profoundly altered the treatment of advanced kidney 
cancer, yet too few patients benefit, and for too brief a 
time. The many trials testing combined VEGF-directed 
and checkpoint inhibitor therapies bring excitement for 
the future, and the results may change the standard of 
care for treatment-naive kidney cancer. Several questions 
are being asked.

First, will any particular blockade of PD-1/PD-L1 or 
VEGF be superior? Anti-VEGF TKI activity may differ 
from that of antibodies, and the results of inhibition of 
different parts of the VEGF-VEGF/R axis may also differ. 
Simultaneous targeting of additional escape pathways 
may be useful.

Second, how does combined blockade compare 
with sequential blockade? Is there a survival benefit that 
justifies the risk for increased toxicity with concurrent 
therapy? Will it increase the “tail of the curve” of long-
term responders who will need no further treatment? And 
although not currently standard of care, what if patients 
have previously been treated with neoadjuvant/adjuvant 
therapy? Adjuvant VEGF inhibition has been tested in 
the S-TRAC (Sunitinib Treatment of Renal Adjuvant 
Cancer)110 and ASSURE (Adjuvant Sorafenib or Suni-
tinib for Unfavorable Renal Carcinoma)111 trials, and 
neoadjuvant/adjuvant PD-1/PD-L1 inhibition is under 
investigation in PROSPER RCC (A Phase 3 Randomized 
Study Comparing Perioperative Nivolumab vs Obser-
vation in Patients with Localized Renal Cell Carcinoma 
Undergoing Nephrectomy; NCT03055013), MK-3475-
031 (A Study Evaluating the Effect of Pembrolizumab in 
Participants With Renal Cell Cancer; NCT02212730), 
and IMmotion010 (A Study of Atezolizumab as Adjuvant 
Therapy in Participants With Renal Cell Carcinoma at 
High Risk of Developing Metastasis Following Nephrec-
tomy; NCT03024996).

Third, how will this combination approach compare 
with other combinations, such as nivolumab plus ipilim-
umab, and in what sequence should different combina-
tion strategies be used?

Finally, can we identify the patients most likely to 
benefit (or not benefit) from the VEGF/PD-1 combina-
tion strategy? Some patients may require only checkpoint 
inhibitors; others may need the combination. It has been 
difficult to identify biomarkers of response to either 
VEGF-directed therapy or checkpoint inhibitors individ-
ually; it may be even more difficult to identify biomarkers 
of response to combined therapies. Further research may 
allow the use of biomarkers to direct an individualized 
immunotherapy strategy.112 

In summary, the landscape of treatments for advanced 

kidney cancer is rapidly evolving, shaped by increasing 
understanding of underlying pathogenic mechanisms and 
interactions among them. Future studies may allow us to 
select patients for different strategies depending on the 
unique characteristics of their tumors, and so fulfill the 
goal of personalized medicine.
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