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Abstract: Endocrine-based treatments are the backbone of initial 
therapy for advanced hormone receptor–positive breast cancers. 
Developing new therapeutic strategies to address resistance to 
endocrine therapy is an area of active research. In this review, we 
discuss targeted therapies that are currently the standard of care, 
as well as agents that are at present under investigation as potential 
treatments for advanced hormone receptor–positive breast cancer. 

Introduction

Hormone receptor–positive (HR+) breast cancers are the most com-
monly identified subtype of breast cancer, accounting for about 70% 
of early and de novo metastatic breast cancer diagnoses.1,2 Estrogen 
is the main driver of cancer cell proliferation in HR+ breast cancer. 
Upon binding with estrogen, the estrogen receptor (ER) acts as both 
a direct transcription factor and a regulator of other transcription 
factors to drive cell proliferation.3 Therefore, a key component in the 
initial treatment of metastatic HR+ breast cancer is estrogen depriva-
tion. In the treatment-naive state, most advanced HR+ breast cancers 
are sensitive to estrogen blockade with either an aromatase inhibitor 
(AI; eg, letrozole, anastrozole, or exemestane) for postmenopausal 
women or an AI plus ovarian suppression for premenopausal women. 

Resistance to endocrine therapy is an inevitable development, 
however, and may be acquired or primary. Acquired resistance is 
defined as disease progression beyond 2 years of adjuvant endocrine 
therapy or after at least 6 months of endocrine therapy in the setting 
of advanced breast cancer; primary resistance is defined as disease 
progression within 2 years of adjuvant endocrine therapy or after 
less than 6 months of endocrine therapy in the advanced setting.4 
In acquired resistance, mutations or genomic alterations develop 
owing to therapy selection pressures that favor continued cancer cell 
proliferation despite the loss of primary estrogen signaling. In pri-
mary resistance, which affects a smaller pool of patients, mutations 
or genomic alterations are present in the untreated breast cancer.5 
Examples of acquired genomic alterations leading to endocrine 
therapy resistance include mutations in the estrogen receptor alpha 
(ESR1) gene and mutations or alterations leading to an increased acti-
vation of growth factor pathways, such as phosphoinositide 3-kinase 
(PI3K). Primary genomic alterations include loss of p16, fibroblast 
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growth and contributing to endocrine resistance.8,10 The 
addition of specific inhibitors of CDK4/6 (palbociclib 
[Ibrance, Pfizer], ribociclib [Kisqali, Novartis], abemac-
iclib [Verzenio, Lilly], and dalpiciclib [SHR6390]) to 
an endocrine backbone (an AI or fulvestrant) prolongs 
endocrine sensitivity, and CDK4/6 inhibitors are now 
recommended as part of first-line therapy for patients 
with metastatic HR+ disease. Palbociclib, ribociclib, abe-
maciclib, and dalpiciclib all prolong progression-free sur-
vival (PFS) in the first- or second-line setting,11-15 and an 
overall survival (OS) benefit has been shown in the first-
line setting for premenopausal women,12 although it has 
not yet been reported in postmenopausal women.11,16,17 
In the second-line setting, the combination of either 
fulvestrant and abemaciclib or fulvestrant and ribociclib 
prolonged OS in the intention-to-treat population and 
in patients with endocrine-resistant disease.14,18 Although 
the combination of fulvestrant and palbociclib did not 
result in a significant OS difference in the intention-
to-treat population, it did appear to increase OS in the 
patients with endocrine-sensitive breast cancer on sub-
group analysis.13 

Evidence suggests that patients with HR+ breast 
cancer that has progressed during endocrine therapy and 
CDK4/6 inhibitor treatment could still benefit from an 
endocrine-based regimen if the correct resistance mecha-
nism were addressed. In a small study looking at patients 
treated with letrozole/palbociclib, new ESR1 mutations 
developed over the course of treatment.19 Another 
correlative study (PALOMA-3) looking at the cell-free 
circulating tumor DNA of patients treated with fulves-
trant/palbociclib found that 30% of them had acquired 
new mutations in genes such as ESR1, PI3KCA, ERBB2, 
FGFR, and Rb over the course of treatment.20 Interestingly, 
the mutational profile of patients treated with fulvestrant 
was the same as that of the patients treated with fulves-
trant/palbociclib except for the presence of Rb mutations, 
which developed in 5% of patients after treatment with 
fulvestrant/palbociclib but not in those treated with 
fulvestrant alone. This finding suggests that treatment 
is pressuring both the development of mutations such 
as those in ESR1 that will directly evade the endocrine 
backbone and alterations in other pathways that drive 
breast cancer proliferation, rather than that the breast 
cancer is developing independence from estrogen-based 
signaling. With continued tumor dependence on estrogen 
signaling, it is reasonable to posit that additional endo-
crine-based treatments could be effective if paired with 
the correct adjunct treatment to address the resistant 
pathway. This idea was supported by the results of the 
BOLERO-2 randomized phase 3 trial, which showed that 
the combination of everolimus, a mammalian target of 
rapamycin (mTOR) inhibitor, plus exemestane improved 

growth factor receptor (FGFR) gene amplifications, and 
MYC amplification or overexpression.5-8 

In this review, we discuss the development of current 
and investigational targeted therapies for patients with 
advanced HR+ breast cancer. 

Standard-of-Care Strategies to Address 
Endocrine Resistance

Genomic Alterations in HR+ Breast Cancer
Resistance to endocrine therapy can be related to a vari-
ety of genomic alterations in several different pathways 
(Figure). One of the challenges of addressing the genomic 
alterations in advanced HR+ breast cancer is the diversity 
of mutations that can be implicated in treatment resis-
tance. Several breast cancer cell pathways can be altered 
to favor cancer progression and carcinogenesis, and many 
of the genomic alterations that are seen in advanced HR+ 
breast cancer occur in 10% or fewer of patients.5,7 

The major steps in the ER pathway include estrogen 
binding to the ER with signaling through cyclin-depen-
dent kinases 4 and 6 (CDK4/6) and cyclin D, leading 
to the phosphorylation of retinoblastoma protein (Rb). 
Phosphorylation of Rb releases the E2F transcription fac-
tor and triggers progression from G1 to S in the cell cycle, 
leading to cancer cell proliferation and tumor growth. 
Multiple pathways and proteins other than direct binding 
with the ER route through CDK4/6 and lead to Rb phos-
phorylation.. These include alterations such as inactiva-
tion of p16, which inhibits CDK4/6, a common finding 
in breast cancer9; mutations in PIK3CA and TP53, which 
are found in about 40% of patients with metastatic HR+ 
breast cancer; and alterations in proteins such as PTEN, 
ERBB2, MYC, and ARID1A, which occur in 10% or 
fewer patients but still drive cell proliferation.5,7 

These alterations ultimately favor the development 
of endocrine therapy resistance (ie, continued cellular 
proliferation despite endocrine blockade). Some of the 
propensities to resistance are present in untreated pri-
mary HR+ breast cancer, such as genomic alterations 
in PIK3CA, HER2, AKT, and FGFR,5,7 whereas others 
develop through selection pressure with endocrine treat-
ment. Mutations in ESR1 are one of the more common 
treatment-acquired alterations. ESR1 mutations are pres-
ent in only 3% of untreated HR+ breast cancers, but in 
25% of AI-treated HR+ breast cancers.7 Selective estrogen 
receptor downregulators (SERDs) such as fulvestrant were 
subsequently developed to address ESR1 mutations.

CDK4/6 Inhibitors
Inactivation of p16 and modifications in the Rb/CDK4/
CDK6/cyclin D pathway are present in approximately 
50% of primary HR+ breast cancers, driving cancer cell 
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PFS vs exemestane alone in advanced HR+ breast cancer 
that had already been exposed to AIs.21

PI3K Inhibitors
Because almost 40% of HR+ breast cancers have a 
mutation in PIK3CA,22 researchers became interested 
in therapies targeting the PI3K pathway. PI3K has 4 
isoforms: alpha, beta, delta, and gamma. In 2019, the 
alpha-specific PI3K inhibitor alpelisib (Piqray, Novartis) 
was combined with fulvestrant for the treatment of AI-re-
sistant, PIK3CA-mutated advanced HR+ breast cancer 
and became the second PI3K pathway inhibitor approved 
by the Food and Drug Administration (FDA). Approval 
was based on the clinical and statistically significant PFS 
advantage seen in the SOLAR-1 trial,23 albeit without 
a statistically significant OS benefit.24 This was the first 
approval of a drug for advanced HR+ breast cancer that 
required companion genomic testing to identify patients 
who would benefit from the drug, and early genomic test-
ing has since become a standard in advanced HR+ breast 
cancer. However, only 3% of patients in the pivotal trial 
had prior exposure to CDK4/6 inhibitors.23 Nevertheless, 
the combination of fulvestrant and alpelisib appears to 

be a feasible second-line option for patients previously 
exposed to CDK4/6 inhibitors, as preliminary results 
of a nonrandomized phase 2 trial of fulvestrant/alpelisib 
or letrozole/alpelisib in patients with PI3KCA-mutated, 
HR+/HER2– cancer that previously progressed on 
endocrine therapy plus CDK4/6 inhibitors demonstrated 
clinical activity.25 

Additional PI3K inhibitors are under development. 
Buparlisib and pictilisib are both pan-inhibitors of PI3K. 
GDC-0077, like alpelisib, is an alpha isoform–specific 
inhibitor; copanlisib (Aliqopa, Bayer) is alpha isoform– and 
delta isoform–specific; and taselisib is “beta-sparing” and 
targets the alpha, delta, and gamma isoforms. Buparlisib, 
pictilisib, and taselisib had modest PFS benefits in HR+ 
breast cancer, but frequent interruptions because of toxicity 
limited further development of these drugs.26,27 Copan-
lisib is still being explored as a potential agent because 
of preliminary benefit, in combination with letrozole, in 
both PIK3CA- and PTEN-mutated HR+ breast cancer 
cell lines.28 Two trials, one with copanlisib/fulvestrant 
(NCT03803761) and one with copanlisib/abemaciclib/
fulvestrant (NCT03939897) in the post-CDK4/6 inhibi-
tor setting (Table 1), are currently underway. 
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Figure. Estrogen receptor signaling in HR+ breast cancer. 

AKT, RAC-alpha serine/threonine protein kinase; BC, breast cancer; CDK4/6, cyclin-dependent kinases 4 and 6; ER+, estrogen 
receptor–positive; ERα, estrogen receptor alpha; ESR1, estrogen receptor alpha gene; FGFR, fibroblast growth factor receptor; 
HER2, human epidermal growth factor receptor 2; IGFR-1, insulin-like growth factor receptor 1; mTORC, mammalian target of 
rapamycin complex; PI3K, phosphoinositide 3-kinase; PTEN, phosphatase and tensin homolog; Rb, retinoblastoma protein.
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Novel Targeted Therapies for Patients With 
Endocrine-Resistant HR+ Breast Cancer

Most patients will move on to treatment with chemo-
therapy after their disease has progressed on the available 
endocrine therapies with or without approved targeted 
treatments. However, multiple functional genomic alter-
ations potentially could be targeted for therapeutic bene-
fit and reversal of endocrine therapy resistance. The next 
section reviews the various agents under investigation.

Novel Agents Targeting the Estrogen Receptor
Fulvestrant is an FDA-approved SERD that is adminis-
tered via intramuscular injection. SERDs are antagonists 
of the ER, binding to it and causing degradation of the 
receptor protein. ESR1 mutations result in cellular pro-
liferation through both ER ligand–dependent and ER 
ligand–independent gene transcription, increased ER 
coactivator binding in the presence of tamoxifen, and 
decreased ER degradation in the presence of fulvestrant.29 

Multiple SERDs under development that are orally 
administered appear to have reasonable safety profiles 
and to have activity against breast cancers with ESR1 
mutations. These include GDC 9545,30,31 elacestrant,32 
AZD9496,33 AZD9833,34 SAR 439859,35,36 LSZ102,37 
and rintodestrant.38 Only AZD9496 has been compared 
directly with fulvestrant, and at the dose tested, it did 
demonstrate ER degradation, although the rates of degra-
dation were not superior to those seen with fulvestrant.33 
Multiple ongoing trials are looking to combine novel 
SERDs with CDK4/6 or PI3K inhibitors, including 
NCT04059484, which is evaluating SAR439859 in com-
bination with targeted therapies. 

The complete estrogen receptor antagonist (CERAN) 
OP-1250, which is an oral small molecule, has demon-
strated activity in preclinical models of HR+ breast can-
cer.39 Like fulvestrant, OP-1250 differs from many of the 
other estrogen-binding agents in that it has no activity as 
agonist binding to uterine ER and therefore no increased 
risk for endometrial cancer.39 NCT04505826 is a phase 1/2 
study evaluating OP-1250 in advanced HR+ breast cancer.

Whereas SERDs and CERANs bind reversibly to the 
ER, the selective estrogen receptor covalent antagonist 
(SERCA) H3B-6545 binds covalently to the Cys530 resi-
due of the ER. Like the novel SERDs, this is an oral agent. 
In heavily pretreated patients, H3B-6545 demonstrated 
activity in those with wild-type or ESR1-mutated HR+ 
breast cancers; the only notable side effect was bradycar-
dia.40 H3B-6545 is being studied in combination with 
palbociclib (NCT04288089).41

AKT Inhibitors
Mutations in PIK3CA and AKT are generally mutually 
exclusive.42,43 PI3K phosphorylates RAC-alpha serine/

threonine protein kinase (AKT), leading to downstream 
signaling that promotes cell growth. PTEN acts as an 
inhibitor of the PI3K pathway by dephosphorylating the 
same targets. PIK3CA mutations do not clearly result in 
an increase in AKT phosphorylation, regardless of PTEN 
status (high or low), but mutations in AKT1 do seem 
to increase AKT phosphorylation, even in the presence 
of high PTEN levels.44 The E17K mutation in AKT1 
is associated with HR+ and HER2-nonamplified breast 
cancers.45 The duration of CDK4/6 inhibitor therapy is 
similar in patients with wild-type and those with mutant 
AKT1, but there is some suggestion that tumors with 
AKT1 mutations benefit from mTOR inhibitors longer 
do than tumors with wild-type AKT1.46 

Ipatasertib and capivasertib are 2 AKT inhibitors that 
are currently under investigation or have been tested in 
HR+ breast cancer. Ipatasertib was tolerable in combina-
tion with fulvestrant and palbociclib, with some evidence 
of clinical activity in the preliminary results of the phase 
1b trial.47 At this point, however, further development 
of ipatasertib in HR+ breast cancer has been discontin-
ued. Capivasertib has demonstrated activity in patients 
with AKTE17K-mutated HR+ breast cancer. In patients 
who received capivasertib monotherapy, an objective 
response rate (ORR) of 20% was seen, and an ORR of 
36% with capivasertib/fulvestrant was noted in patients 
previously treated with fulvestrant.48 In that study, PFS 
was improved in patients who had an early decrease in 
AKTE17K mutations in plasma. 

A randomized phase 2 study of fulvestrant/capiva-
sertib in postmenopausal women with endocrine-resistant 
advanced HR+ breast cancer (not selected for AKT muta-
tions) demonstrated better PFS in women treated with 
the combination than in women treated with fulvestrant 
alone.49 This study did explore if PTEN/PI3K pathway 
alterations, specifically loss of PTEN or PI3KCA hotspot 
mutations in exon 9 or 20, had an effect on ORR or PFS 
in subgroup analyses. Patients without loss of PTEN or 
PI3KCA mutations had better PFS with capivasertib/ful-
vestrant than with fulvestrant alone, but for the subgroup 
of patients with loss of PTEN or PI3KCA mutations, 
the difference in PFS was not statistically significant. 
This suggests that mutations in PTEN and PI3KCA can 
unfortunately overcome AKT blockade with capivasertib. 
Nevertheless, the results of the phase 2 trial showing 
activity in patients with wild-type PTEN and PI3KCA 
remain promising, and phase 3 studies are ongoing for 
the combination of fulvestrant and capivasertib. 

mTORC Inhibitors
Mammalian target of rapamycin complexes 1 (mTORC1) 
and 2 (mTORC2) are downstream of AKT but upstream 
of the CDK4/6 complex. The mTORC1 inhibitor 
everolimus was FDA-approved with tamoxifen, an AI, 
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or fulvestrant on the basis of a significant improvement 
in PFS, particularly in patients with acquired endo-
crine therapy resistance, although no effect on OS was 
seen.21,50,51 The encouraging results indicating that ever-
olimus could address endocrine resistance led to interest 
in dual mTORC1 and mTORC2 inhibition. Vistusertib 
is a dual mTORC1 and mTORC2 inhibitor that in 
combination with fulvestrant did not improve PFS vs 
fulvestrant alone, and the vistusertib/fulvestrant combi-

nation was inferior to fulvestrant/everolimus.52 However, 
in preclinical studies, the addition of CDK4/6 inhibi-
tion to fulvestrant/vistusertib increased the effectiveness 
of the combination in inducing cell growth arrest and 
also delayed the development of treatment resistance.53 
The combination of everolimus/exemestane/ribociclib 
showed promising activity in patients who had previ-
ously received CDK4/6 inhibitors, with 41% of patients 
deriving clinical benefit.54 

Table 1. Clinical Trials That Are Exploring Targeted Therapy in Advanced Estrogen Receptor–Positive Breast Cancer 

Investigational Agent 
Class

Clinical Trial No. Investigational Agent(s), Phase Biomarker of Interest

mTOR inhibitor* NCT02599714 Vistusertib + palbociclib + fulvestrant, 2

PI3K inhibitor NCT01633060
NCT01437566
NCT02340221
NCT04191499
NCT03939897

Buparlisib + fulvestrant, 3
Pictilisib + fulvestrant, 2
Taselisib + fulvestrant, 3
GDC-0077 + palbociclib + fulvestrant, 2/3
Copanlisib + abemaciclib + fulvestrant, 1/2

PIK3CA mutation

PIK3CA mutation
PIK3CA mutation
PIK3CA, PTEN alterations, pAKT 
levels

SERD/CERAN NCT04214288
NCT04059484 
NCT04514159
NCT03560531
NCT04505826

AZD-9833, 2
SAR439859, 2
Zn-c5 + abemaciclib, 1b
Zn-c5 + palbociclib, 1/2
OP-1250, 1/2

AKT inhibitor NCT03337724
NCT04060862
NCT04305496

Ipatasertib + paclitaxel, 2/3
Ipatasertib + palbociclib + fulvestrant, 3
Capivasertib + fulvestrant, 3

PIK3CA, PTEN, or AKT1 altered

FGFR inhibitor NCT03238196 Erdafitinib + palbociclib + fulvestrant, 1 FGFR amplification

HER2-directed NCT04494425
NCT01670877

Trastuzumab deruxtecan, 3
Neratinib + fulvestrant + trastuzumab, 2

HER2-low by IHC or ISH
HER2-nonamplified with HER2 
mutation

IGFR-1 inhibitor NCT03659136 Xentuzumab + everolimus + exemestane, 2

TKI NCT01441947
NCT03854903

Cabozantinib + fulvestrant, 2
Bosutinib + palbociclib + fulvestrant, 2

Aurora A kinase 
inhibitor

NCT02860000 Alisertib + fulvestrant, 2

SARM NCT04142060
NCT02463032

Enzalutamide (+ exemestane), 2
Enobosarm, 2

HER2-enriched by PAM50 profile

Bcl-2 inhibitor NCT03900884
NCT03584009

Venetoclax + palbociclib + letrozole, 1
Venetoclax + fulvestrant, 2

BET inhibitor NCT02964507 GSK525762 + fulvestrant, 2

HDAC inhibitor NCT02115282 Entinostat + exemestane, 3

DNMT inhibitor NCT04134884 ASTX727 + talazoparib BRCA1/2 wild-type

* Combinations for which further clinical development in ER+ breast cancer has been halted are in red type.

AKT, RAC-alpha serine/threonine protein kinase; Bcl-2, B-cell lymphoma 2; BET, bromodomain and extraterminal; BRCA1/2, breast cancer 
type 1 and type 2 susceptibility gene; CERAN, complete estrogen receptor antagonist; DNMT, DNA methyltransferase inhibitor; ER+, estrogen 
receptor–positive; FGFR, fibroblast growth factor receptor; HDAC, histone deacetylase; HER2, human epidermal growth factor receptor 2; IHC, 
immunohistochemistry; ISH, in situ hybridization; IGFR-1, insulin-like growth factor receptor 1; pAKT, phosphorylated RAC-alpha serine/
threonine protein kinase; PI3K, phosphoinositide 3-kinase; PTEN, phosphatase and tensin homolog; SARM, selective androgen receptor modulator; 
SERD, selective estrogen receptor downregulator; TKI, tyrosine kinase inhibitor. 
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Receptor Tyrosine Kinase Inhibitors
Multiple tyrosine kinase pathways upstream from PI3K 
and mTORC can drive breast cancer cell proliferation 
as well as endocrine resistance. Current tyrosine kinase 
receptors of therapeutic interest in endocrine-resistant 
HR+ breast cancer include fibroblast growth factor recep-
tor 1 (FGFR1), human epidermal growth factor receptor 
2 (HER2), and insulin-like growth factor receptor 1 
(IGFR-1). Signaling through these pathways may con-
tribute to the development of resistance during treatment 
with combination endocrine blockade and CDK4/6 inhi-
bition, and several clinical trials are exploring triplet drug 
combinations in patients whose disease has progressed 
through CDK4/6 inhibitor treatment.

Amplification and activating mutations of FGFR1 
are associated with a higher frequency of resistance to 
endocrine-based therapies in patients with early-stage 
HR+ breast cancer.55,56 These alterations can be primary 
or acquired through treatment.7,20 In patient-derived 
xenograft mouse models of FGFR1-amplified HR+ breast 
cancer, the combination of fulvestrant, palbociclib, and 
erdafitinib (Balversa, Janssen), a pan-FGFR inhibitor, 
exhibited more anti-growth activity and suppression of 
Ki-67 than did fulvestrant/palbociclib alone.56 A clinical 
trial of fulvestrant/palbociclib/erdafitinib is currently 
ongoing in patients with metastatic HR+ breast cancer 
that is refractory to endocrine therapy and CDK4/6 
inhibitors, and preliminary results show clinical activity 
in patients with high levels of FGFR1 amplifications.57

Mutations in ERBB2 and ERBB3 have also been asso-
ciated with endocrine resistance. In a study performing 
whole-exome sequencing in patients with HR+ metastatic 
breast cancer, approximately 7% of patients had activat-
ing ERBB2 mutations in biopsy specimens from meta-
static sites; some of these alterations were likely acquired 
through treatment selection pressure.58 Another study 
found that these mutations are slightly more common in 
invasive lobular carcinomas than in ductal carcinomas.59 

Preclinical studies have shown that fulvestrant 
increases HER2 and EGFR phosphorylation in HR+ 
and HER2-amplified breast cancers, and that treatment 
with neratinib (Nerlynx, Puma Biotechnology) in these 
breast cancers induces ER transcriptional activity.60 Cur-
rently, 2 trials are looking at the use of HER2-targeted 
therapies in HER2-nonamplified or HER2-low (0+ or 
1+ by immunohistochemistry) breast cancers. One study 
(NCT01670877) is evaluating neratinib in combination 
with fulvestrant for metastatic HR+ breast cancer with 
ERBB2 mutations. An interim analysis demonstrated 
activity, with a 33% ORR in the cohort, a 17% ORR 
in patients previously treated with fulvestrant, and a 
26% ORR in patients previously treated with CDK4/6 
inhibitors.61 A retrospective genomic analysis in a subset 

of the patients enrolled in SUMMIT suggested that those 
with multiple mutations in HER2 or HER3 at baseline 
had worse outcomes with neratinib, and that the devel-
opment of additional HER2-activating mutations was a 
potential mechanism of acquired resistance to neratinib.62 
In HER2-amplified breast cancers, the combination of 
trastuzumab/neratinib prevented reactivation of HER3 
and AKT, which is thought to be a mechanism of nerati-
nib resistance.63 The SUMMIT trial was amended to add 
trastuzumab at the time of progression on fulvestrant/
neratinib to target HER2 with multiple agents. A second 
phase 3 trial targeting the HER2 pathway is evaluating 
the antibody-drug conjugate trastuzumab deruxtecan 
(Enhertu, Daiichi-Sankyo/AstraZeneca) vs standard-of-
care chemotherapy in metastatic HER2-low breast cancer. 
In the phase 1b study, the ORR was 37%, with a 10.4-
month duration of response in heavily pretreated patients,64 
which was encouraging. Final results from both of these 
studies are pending. 

Finally, the IGF-1 and IGF-2 receptors may play a 
role in endocrine resistance through upregulation of IGF 
signaling.65 Several clinical trials have examined various 
agents targeting the IGF pathway, but thus far none have 
shown benefit.66 Xentuzumab is a humanized neutraliz-
ing antibody against IGF-1 and IGF-2. In a phase 1b/2 
study of xentuzumab in combination with exemestane 
and everolimus, no PFS benefit was observed with xentu-
zumab vs xentuzumab/everolimus/exemestane.67 However, 
subgroup analysis indicated a possible benefit in patients 
without visceral metastases, and a second clinical trial 
(NCT03659136) in this patient population is underway.

Protein Kinase Inhibitors
Both cabozantinib (Cabometyx, Exelixis) and bosutinib 
(Bosulif, Pfizer) are protein kinase inhibitors that are 
currently under investigation in metastatic HR+ breast 
cancer. Cabozantinib, which inhibits MET and vascular 
endothelial growth factor receptor 2 (VEGFR2), has 
shown activity as monotherapy in patients with HR+ 
breast cancer.68 Bosutinib, a dual SRC/Abl inhibitor, 
has been studied in combination with letrozole and in 
combination with exemestane in the early treatment of 
metastatic HR+ breast cancer. Several patients responded 
to either cabozantinib or bosutinib in both studies, but 
both studies were discontinued owing to drug-related 
liver toxicity.69,70 Several other trials are currently in prog-
ress that pair cabozantinib with fulvestrant and bosutinib 
with fulvestrant and palbociclib.

Aurora A kinase is a serine/threonine kinase that 
controls the segregation of DNA during mitosis; at high 
levels of overexpression, it is a negative prognostic marker 
in HR+/HER2– breast cancer.71 Aurora A kinase has been 
found to contribute to endocrine resistance by driving 
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downregulation of ERa through SMAD5.72 In a phase 
1 study combining fulvestrant with alisertib, an aurora A 
kinase inhibitor, in patients with endocrine-resistant HR+ 
breast cancer, the majority of patients derived clinical 
benefit during the treatment, with a median PFS of 12.4 
months.73 A randomized phase 2 study of alisertib with 
and without fulvestrant demonstrated that fulvestrant 
did not significantly augment alisertib activity (ORR, 
20%), but the study did affirm that alisertib has activity 
as a monotherapy, achieving a 17.8% ORR in a group of 
patients who had previously been treated with fulvestrant, 
AIs, and CDK4/6 inhibitors.74 

Apoptosis Pathway 
Bcl-2 is an apoptosis regulator that is expressed in most 
HR+ breast cancers, and when it was inhibited in preclin-
ical mouse models, the antitumor efficacy of tamoxifen 
was improved.75 In a phase 1 study looking at the combi-
nation of tamoxifen and venetoclax (Venclexta, AbbVie), 
a Bcl-2 inhibitor, the most common side effects were nau-
sea, infection, fatigue, and rash, with no patients requiring 
study discontinuation owing to toxicity.76 Venetoclax and 
tamoxifen demonstrated clinical activity, particularly at 
the highest dose level, with clinical benefit seen in patients 
whose disease had previously progressed on tamoxifen as 
well as first-line treatment with a CDK4/6 inhibitor and 
an AI. In a phase 2 study, the combination of fulvestrant 
and venetoclax did not significantly improve PFS or OS 
in comparison with fulvestrant alone.77 An ongoing trial 
is evaluating venetoclax in combination with letrozole/
palbociclib.78

Androgen Receptor Targeting
The androgen receptor (AR) is expressed in more than 
80% of early HR+ breast cancers in postmenopausal 
women79 and may contribute to endocrine resistance.80 
A randomized phase 2 study evaluating a combination 
of the AR inhibitor enzalutamide (Xtandi, Astellas) and 
exemestane in advanced HR+ breast cancer found no 
PFS benefit in the overall cohort, but it did note that 
patients with high levels of circulating AR mRNA seemed 
to benefit.81 A current clinical trial using enzalutamide is 
focusing on patients who have HR+ breast cancer with the 
HER2-enriched PAM 50 phenotype (NCT04142060). 
Approximately half of the breast cancers in the HER2-en-
riched subgroup are not HER2-amplified, and in these 
breast cancers, AR may be a driver of breast cancer prolif-
eration.82 Other AR antagonists studied in breast cancer 
include bicalutamide, which did not show any benefit in 
combination with AIs,83 and orteronel.84

Androgen agonists are also of interest in advanced 
HR+ breast cancer. The AR can function as a tumor sup-
pressor in HR+ breast cancer, and preclinical studies have 

demonstrated that androgen agonists can induce antineo-
plastic activity in endocrine-resistant and CDK4/6 inhib-
itor–resistant breast cancer.85 A phase 2 trial evaluating 
enobosarm, a selective AR agonist, in advanced HR+ 
breast cancer demonstrated a clinical benefit in about 
one-quarter of heavily pretreated patients.86 Further anal-
ysis of the results based on tumor AR staining showed 
that breast cancers with at least 40% AR staining had 
an ORR of 48%, whereas breast cancers with less than 
40% staining had an ORR of 0%.87 On the basis of these 
results, enobosarm is moving forward into a phase 3 trial 
(NCT04869943) in AR+/ER+/HER2– advanced breast 
cancer.

Epigenetic Drugs
Three groups of epigenome-modulating drugs are under 
investigation for treating HR+ breast cancer: histone 
deacetylase (HDAC) inhibitors, bromodomain and extra-
terminal domain (BET) protein inhibitors, and DNA 
methyltransferase (DNMT) inhibitors. In vitro, HDAC 
inhibitors reverse the transcriptional upregulation of 
c-MYC and Bcl-2 in tamoxifen-resistant breast cancer cells 
and restore endocrine sensitivity.88 A randomized phase 2 
study (ENCORE 301) that looked at the combination of 
entinostat, an HDAC inhibitor, with exemestane in post-
menopausal women with advanced HR+ breast cancer 
suggested that the addition of entinostat to exemestane 
significantly prolonged PFS.89 However, the subsequent 
phase 3 study did not show a PFS or OS benefit.90 

Similarly, preclinical studies of BET inhibitors in 
combination with fulvestrant have demonstrated activity 
in endocrine therapy–resistant breast cancer,91 as well as in 
reversing resistance to everolimus.92 Results from a phase 
1/2 study combining the pan-BET inhibitor GSK525762 
with fulvestrant in patients with advanced ER+ breast 
cancer are currently pending.93 

DNMT inhibitors are being studied in combination 
with poly(ADP)-ribose polymerase (PARP) inhibitors 
in BRCA wild-type cancers. In patients with germline 
BRCA-mutated breast cancer, who account for approx-
imately 10% of patients with HER2-negative meta-
static breast cancer,94 olaparib (Lynparza, AstraZeneca) 
improved PFS vs physician’s choice of chemotherapy,95 
and although no OS benefit was observed in the overall 
cohort, patients with no prior chemotherapy seemed to 
derive some survival benefit.96 Preclinical studies in breast 
cancer cell lines have suggested that using a DNMT 
inhibitor concurrently with a PARP inhibitor enhances 
the antitumor effect of PARP inhibitors, irrespective of 
BRCA status.97,98 This would expand the utility of PARP 
inhibitors to all patients, regardless of BRCA status. 
An ongoing clinical trial that is combining talazoparib 
(Talzenna, Pfizer) with ASTX727, a DNMT inhibitor, 
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includes patients who have endocrine therapy–resistant 
HR+ breast cancer.

Immunotherapy in HR+ Breast Cancer
Immunotherapy is appealing because of its ability to 
induce durable responses in other tumor types that can 
persist even while the patient is off therapy. In triple-neg-
ative breast cancer (TNBC), for which 2 first-line immu-
notherapy-based regimens are currently approved by the 
FDA, the combination of chemotherapy and immuno-
therapy has demonstrated clinical benefit in the first-line 
setting.99,100 However, the combination of chemotherapy 
and immunotherapy has not yet been successful in 
advanced HR+ breast cancer. The rates of immune infil-
tration, defined by tumor-infiltrating lymphocytes,101 are 
lower in HR+ breast cancer, and the ORR in programmed 
death ligand 1 (PD-L1)–positive HR+ breast cancer when 
treated with programmed death 1 (PD-1) monotherapy 
is low (12%).102 A trial exploring eribulin (Halaven, 
Eisai) in combination with pembrolizumab (Keytruda, 
Merck) did not did not find any increase PFS or OS in 
patients with HR+ cancers, and approximately half of the 
patients experienced grade 3/4 toxicities.103 Nonetheless, 
other clinical trials will use other chemotherapy agents 
in combination with immunotherapy, including weekly 
paclitaxel with pembrolizumab in luminal-B HR+ breast 
cancer (NCT03841747) and nab-paclitaxel (Abraxane, 
Bristol Myers Squibb) in combination with nivolumab 
(Opdivo, Bristol Myers Squibb) with or without ipilim-

umab (Yervoy, Bristol Myers Squibb; NCT04132817).
The combination of immunotherapy and endocrine 

treatments may have some efficacy in advanced HR+ 
breast cancer because endocrine-based therapies may 
modulate the tumor microenvironment. In preclinical 
studies, fulvestrant decreased the infiltration of neutro-
phils and macrophages and also decreased the levels of 
cytokine receptors and chemokines associated with tumor 
progression.104 The combination of endocrine therapy 
and immune checkpoint inhibitors could be synergistic 
by promoting antitumor effects through both innate and 
adaptive immunity. Multiple trials are currently ongoing 
to evaluate the combination of PD-1 and PD-L1 inhib-
itors, endocrine therapy, and targeted therapies for the 
treatment of HR+ breast cancer (Table 2) . 

The addition of targeted agents such as HDAC 
inhibitors and AKT inhibitors may also enhance the 
immunotherapy effect. Preclinical studies in HR+ breast 
cancer cell lines show that AKT inhibitors can block 
estradiol-induced upregulation of PD-L1 expression.105 
However, although HDAC inhibitors do seem to enhance 
PD-L1 and human leukocyte antigen – DR isotype 
(HLA-DR) expression in triple-negative breast cancer cell 
lines,106 this effect was not observed in HR+ breast cancer 
lines. This lack of effect was confirmed in the clinical set-
ting. A trial that combined vorinostat (Zolinza, Merck), 
an HDAC inhibitor, with pembrolizumab and tamoxifen 
in patients with advanced HR+ breast cancer showed that 
baseline T-cell exhaustion and a decrease in regulatory 

Table 2. Phase 2/3 Trials of Immunotherapy Agents in Combination With Endocrine Therapy and/or Targeted Treatments in 
Advanced Estrogen Receptor–Positive Breast Cancer

Investigational Agent 
Class

Clinical Trial 
Number 

Investigational Agent(s), Phase Biomarker of Interest

Endocrine therapy NCT03874325
NCT03280563

Durvalumab + AI, 2
Atezolizumab + fulvestrant, 1b/2

CDK4/6 inhibitor NCT03294694
NCT03280563
NCT02778685

Spartalizumab + ribociclib + fulvestrant, 1b
Atezolizumab + abemaciclib + fulvestrant, 1b/2
Pembrolizumab + palbociclib + letrozole, 2

VEGF-A inhibitor NCT03280563 Bevacizumab + atezolizumab + exemestane, 
1b/2
Bevacizumab + atezolizumab + fulvestrant, 
1b/2

AKT inhibitor NCT03280563 Ipatasertib + atezolizumab, 1b/2
Ipatasertib + atezolizumab + fulvestrant, 1b/2

HDAC inhibitor NCT03280563 Entinostat + atezolizumab, 1b/2

TGF-β1 receptor 
inhibitor

NCT03685591 PF-06952229 + palbociclib + letrozole, 1 High TGF-β signature

CXCR4 agonist NCT03786094 Balixafortide + eribulin, 3 CXCR4 expression by IHC

AKT, RAC-alpha serine/threonine protein kinase; CDK4/6, cyclin-dependent kinases 4 and 6; CXCR4, C-X-C chemokine receptor type 4; ER+, 
estrogen receptor–positive; HDAC, histone deacetylase; IHC, immunohistochemistry; TGF-β1, transforming growth factor beta 1; VEGF-A, 
vascular endothelial growth factor A. 
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T cells with treatment were associated with an objective 
response to combination therapy.107 However, the ORR 
in the overall cohort was low (4%), and it was observed 
that neither vorinostat nor pembrolizumab seemed to 
induce a positive shift in the tumor microenvironment in 
terms of promoting an immune response.107 

Cytokine and chemokine signaling that creates a pro-
tumor stromal tumor microenvironment may also be a 
reasonable target to consider in HR+ breast cancer with or 
without the addition of immune checkpoint inhibitors. 
C-X-C chemokine receptor type 4 (CXCR4) signaling 
contributes to immunosuppression through fibroblast 
recruitment, which results in fibrosis, angiogenesis, and 
a hypoxic tumor microenvironment.108 The combina-
tion of balixafortide, a CXCR4 inhibitor, and eribulin 
showed reasonable safety in heavily pretreated patients 
with advanced HR+ breast cancer, achieving an ORR of 
30%.109 Results from a phase 3 trial are awaited.

Conclusions

Endocrine-based therapies for HR+ breast cancer are 
the preferred initial treatment strategy owing to durable 
responses in the majority of patients, favorable toxicity 
profiles, and relatively convenient administration. Endo-
crine resistance develops through multiple potential mech-
anisms, and translational studies looking at CDK4/6-re-
sistant breast cancers suggest that endocrine therapy could 
still be effective if a druggable genomic alteration were 
identified. Despite the current challenges in the field, the 
success of CDK4/6 and PI3K inhibitors in combination 
with either an AI or a SERD illustrates the promise of 
targeted therapies in advanced HR+ breast cancer. Con-
tinued investigation into the mechanisms and drivers of 
endocrine resistance, in addition to the development of 
new, more specific targeted agents, is needed to extend the 
endocrine-based options for HR+ breast cancer therapy.
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